Citation: | Weihao TIE (铁维昊), Cui MENG (孟萃), Chengguang ZHAO (赵程光), Xiaogang LU (鲁小刚), Jun XIE (谢军), Dan JIANG (蒋丹), Zirang YAN (闫自让). Optimized analysis of sharpening characteristics of a compact RF pulse source based on a gyro-magnetic nonlinear transmission line for ultrawideband electromagnetic pulse application[J]. Plasma Science and Technology, 2019, 21(9): 95503-095503. DOI: 10.1088/2058-6272/ab2626 |
[1] |
Giri D V 2015 History of high-power electromagnetics (HPEM) from 1940s to 21st century Proc. 7th Asia-Pacific Conf. on Environmental Electromagnetics (Hangzhou,China) (Piscataway, NJ: IEEE)
|
[2] |
Li X et al 2015 IEEE Trans. Electromagn. Compat. 57 448
|
[3] |
Department of Defense 2010 Electromagnetic Environmental Effects Requirements for Systems: MIL-STD-464C (Washington, DC: Department of Defense)
|
[4] |
Baum C E et al 2004 Proc. IEEE 92 1096
|
[5] |
Farr E G 2012 Antenna Impulse Response with Arbitrary Source and Load Impedances: Sensor and Simulation Note 558
|
[6] |
Tong L Q, Liu K F and Wang Y G 2018 Plasma Sci. Technol.20 024006
|
[7] |
Zhou Q Y, Tong L Q and Liu K F 2018 Plasma Sci. Technol.20 014007
|
[8] |
Ding Z J et al 2009 Rev. Sci. Instrum. 80 093303
|
[9] |
Pokryvailo A, Yankelevich Y and Shapira M 2004 IEEE Trans. Plasma Sci. 32 1909
|
[10] |
Mankowski J, Dickens J and Kristiansen M 1998 IEEE Trans.Plasma Sci. 26 874
|
[11] |
Romanchenk I V et al 2012 Rev. Sci. Instrum. 83 074705
|
[12] |
Rostov V V et al 2010 IEEE Trans. Plasma Sci. 38 2681
|
[13] |
Yamasaki F S et al 2016 IEEE Trans. Plasma Sci. 44 2232
|
[14] |
Ul’maskulov M R et al 2015 Rev. Sci. Instrum. 86 074702
|
[15] |
Ul’maskulov M R et al 2017 IEEE Trans. Plasma Sci. 45 2623
|
[16] |
Bragg J W B, Dickens J C and Neuber A A 2013 IEEE Trans.Plasma Sci. 41 232
|
[17] |
Bragg J W B, Dickens J C and Neuber A A 2012 IEEE Trans.Plasma Sci. 40 2457
|
[18] |
Kovalchuk O B et al 2008 Subnanosecond rise time of high voltage pulses in ferrite loaded coaxial line Proc. 35th Int.Conf. on Plasma Science (Karlsruhe Germany) (Piscataway,NJ: IEEE)
|
[19] |
Bragg J W B, Dickens J C and Neuber A A 2013 J. Appl. Phys.113 064904
|
[20] |
Romanchenko I V et al 2015 J. Appl. Phys. 117 214907
|
[21] |
Dolan J E and Bolton H R 2000 IEE Proc.: Sci. Meas. Technol.147 237
|
[22] |
Rangel E G L et al 2016 IEEE Trans. Plasma Sci. 44 2258
|
[23] |
Baginski M E et al 2013 IEEE Trans. Plasma Sci. 41 2408
|
[24] |
Wei K Z, Jiang R P and Li S G 2013 New Technique of Microwave Ferrite and Application (Beijing: National Defense Industry Press) (in Chinese)
|
[25] |
Reale D V 2013 Coaxial ferrimagnetic based gyromagnetic nonlinear transmission lines as compact high power microwave sources PhD Thesis Texas Tech University
|
[26] |
Yu J G 2010 Research of pulse sharpening based on ferrite line MSc Thesis Xidian University, Xi’an, China (in Chinese)
|
[27] |
Gusev A I et al 2017 Rev. Sci. Instrum. 88 074703
|
[1] | Fei CHEN, Jiajia HOU, Gang WANG, Yang ZHAO, Jiaxuan LI, Shuqing WANG, Lei ZHANG, Wanfei ZHANG, Xiaofei MA, Zhenrong LIU, Xuebin LUO, Wangbao YIN, Suotang JIA. Development of miniaturized SAF-LIBS with high repetition rate acousto-optic gating for quantitative analysis[J]. Plasma Science and Technology, 2023, 25(1): 015510. DOI: 10.1088/2058-6272/ac8511 |
[2] | Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1 |
[3] | Qianyu ZHOU (周乾宇), Liqing TONG (童立青), Kefu LIU (刘克富). Research of magnetic self-balance used in a repetitive high voltage rectangular waveform pulse adder[J]. Plasma Science and Technology, 2018, 20(1): 14007-014007. DOI: 10.1088/2058-6272/aa8e93 |
[4] | QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13 |
[5] | TANG Jingfeng (唐井峰), WEI Liqiu (魏立秋), HUO Yuxin (霍玉鑫), SONG Jian (宋健), YU Daren (于达仁), ZHANG Chaohai (张潮海). Effect of Airflows on Repetitive Nanosecond Volume Discharges[J]. Plasma Science and Technology, 2016, 18(3): 273-277. DOI: 10.1088/1009-0630/18/3/10 |
[6] | HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12 |
[7] | RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05 |
[8] | LI Wenqin (李文琴 ), WEN Xiaoqiong ( 温小琼 ), ZHANG Jialiang (张家良). Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface[J]. Plasma Science and Technology, 2013, 15(10): 1020-1024. DOI: 10.1088/1009-0630/15/10/11 |
[9] | WENG Ming (翁明), XU Weijun (徐伟军). The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube[J]. Plasma Science and Technology, 2012, 14(11): 1024-1029. DOI: 10.1088/1009-0630/14/11/12 |
[10] | SONG Huimin(宋慧敏), ZHANG Qiaogen(张乔根), LI Yinghong(李应红), JIA Min(贾敏), WU Yun(吴云), LIANG Hua(梁华). Plasma Sheet Actuator Driven by Repetitive Nanosecond Pulses with a Negative DC Component[J]. Plasma Science and Technology, 2012, 14(4): 327-332. DOI: 10.1088/1009-0630/14/4/11 |
1. | Priputnev, P.V., Romanchenko, I.V., Rostov, V.V. Systems and Technologies Based on Nonlinear Transmission Lines with Ferrite (Review). Technical Physics, 2024, 69(6): 1730-1741. DOI:10.1134/S1063784224060355 | |
2. | Cui, Y., Meng, J., Yuan, Y. et al. Principle analysis and preliminary experiment of the gyromagnetic nonlinear transmission lines | [旋磁非线性传输线原理分析和初步实验]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2024, 46(3): 222-228. DOI:10.11887/j.cn.202403022 | |
3. | Zhang, W., Lin, M., Li, H. et al. Finite element analysis of pulse sharpening effect of gyromagnetic nonlinear transmission line based on Landau-Lifshitz-Gilbert equation. Review of Scientific Instruments, 2024, 95(6): 064705. DOI:10.1063/5.0203542 | |
4. | Stephens, J., Wright, T., Saheb, D. et al. Experimental Characterization of a Genetic Algorithm-Optimized Nonlinear Transmission Line for High Power RF Generation. IEEE Transactions on Microwave Theory and Techniques, 2024. DOI:10.1109/TMTT.2024.3457311 | |
5. | Samoylichenko, M.A.. Multiple Modal Reservation in Flexible Printed Cables. 2023. DOI:10.1109/UralCon59258.2023.10291140 | |
6. | Jiang, J., Cao, Y., Luo, Z. et al. Simulation research on pulse steepening technology based on ferrite transmission line | [基于铁氧体传输线的脉冲陡化技术仿真研究*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2022, 34(9): 095005. DOI:10.11884/HPLPB202234.220092 | |
7. | Jiang, J., Luo, Z., Cao, Y. et al. Design and Performance of a Ferrite Transmission Line Sharpener for Trigger Generator Used in FLTD. IEEE Transactions on Plasma Science, 2022, 50(9): 3113-3122. DOI:10.1109/TPS.2022.3194029 | |
8. | Cui, Y., Meng, J., Huang, L. et al. 100-MW-Level Experiments of a Gyromagnetic Nonlinear Transmission Line System. IEEE Transactions on Electron Devices, 2022, 69(9): 5248-5255. DOI:10.1109/TED.2022.3192215 | |
9. | Greco, A.F.G., Rossi, J.O., Barroso, J.J. et al. Analysis of the sharpening effect in gyromagnetic nonlinear transmission lines using the unidimensional form of the Landau-Lifshitz-Gilbert equation. Review of Scientific Instruments, 2022, 93(6): 065101. DOI:10.1063/5.0087452 | |
10. | Cui, Y., Meng, J., Yuan, Y. et al. Numerical Analysis on the RF Characteristics of the Gyromagnetic Nonlinear Transmission Lines. IEEE Transactions on Plasma Science, 2022, 50(5): 1188-1197. DOI:10.1109/TPS.2022.3166898 | |
11. | Zhu, D., Meng, J., Huang, L. et al. Simulation Research on a Compact High Power Microwave Source Based on Gyromagnetic Nonlinear Transmission Lines | [基于旋磁非线性传输线的小型化强电磁脉冲源的仿真研究]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2022, 44(2): 737-744. DOI:10.11999/JEIT200912 | |
12. | Huang, L., Meng, J., Zhu, D. et al. Minimum Spatial Filling Rate of the Ferrite Required to Excite the Microwave Oscillations in the Gyromagnetic NLTL. IEEE Transactions on Plasma Science, 2022, 50(1): 23-28. DOI:10.1109/TPS.2021.3135022 | |
13. | Cui, Y., Meng, J., Huang, L. et al. Operation analysis of the wideband high-power microwave sources based on the gyromagnetic nonlinear transmission lines. Review of Scientific Instruments, 2021, 92(3): 034702. DOI:10.1063/5.0040323 | |
14. | Huang, L., Meng, J., Zhu, D. et al. Field-line coupling method for the simulation of gyromagnetic nonlinear transmission line based on the maxwell-LLG system. IEEE Transactions on Plasma Science, 2020, 48(11): 3847-3853. DOI:10.1109/TPS.2020.3029524 | |
15. | Fairbanks, A.J., Darr, A.M., Garner, A.L. A Review of Nonlinear Transmission Line System Design. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.3015715 |