Advanced Search+
Weihao TIE (铁维昊), Cui MENG (孟萃), Chengguang ZHAO (赵程光), Xiaogang LU (鲁小刚), Jun XIE (谢军), Dan JIANG (蒋丹), Zirang YAN (闫自让). Optimized analysis of sharpening characteristics of a compact RF pulse source based on a gyro-magnetic nonlinear transmission line for ultrawideband electromagnetic pulse application[J]. Plasma Science and Technology, 2019, 21(9): 95503-095503. DOI: 10.1088/2058-6272/ab2626
Citation: Weihao TIE (铁维昊), Cui MENG (孟萃), Chengguang ZHAO (赵程光), Xiaogang LU (鲁小刚), Jun XIE (谢军), Dan JIANG (蒋丹), Zirang YAN (闫自让). Optimized analysis of sharpening characteristics of a compact RF pulse source based on a gyro-magnetic nonlinear transmission line for ultrawideband electromagnetic pulse application[J]. Plasma Science and Technology, 2019, 21(9): 95503-095503. DOI: 10.1088/2058-6272/ab2626

Optimized analysis of sharpening characteristics of a compact RF pulse source based on a gyro-magnetic nonlinear transmission line for ultrawideband electromagnetic pulse application

Funds: This work was supported by the China Postdoctoral Science Foundation (No. 2018M6335598).
More Information
  • Received Date: April 23, 2019
  • Revised Date: May 26, 2019
  • Accepted Date: May 30, 2019
  • We constructed a compact high-power RF pulse generator based on a gyro-magnetic nonlinear transmission line (GNLTL) to produce a high-voltage pulse with a sub-nanosecond rise time and a relatively high repetition rate, which shows great potential for application in the high-power ultrawideband electromagnetic effect, etc. The influence of incident pulse parameters (rise time and voltage amplitude) and line length on the sharpening characteristics of the GNLTL were investigated experimentally to optimize the rising rate of the modulated pulse front. Based on the GNLTL equivalent circuit model consisting of an LC ladder network, the rise time, the voltage conversion coefficient and the rising rate properties of a modulated pulse were also numerically analyzed in a wider range. The results show that a>90 kV RF pulse with a rise time of 350 ps and a repetition rate of 1 kHz in burst mode is produced by the GNLTL at an axial biasing magnetic field of 22 kA m−1 and a line length of 30 cm under the condition of a 70 kV incident pulse. Applying a faster and higher incident pulse is conducive to improving the sharpening effect of the GNLTL. Furthermore, within a certain range, increasing the line length of the GNLTL not only reduces the rise time, but increases the voltage conversion coefficient and the rising rate of a modulated pulse. Furthermore, considering the energy loss of ferrite rings, there is an optimal line length to obtain the fastest rising rate of a modulated pulse front edge.
  • [1]
    Giri D V 2015 History of high-power electromagnetics (HPEM) from 1940s to 21st century Proc. 7th Asia-Pacific Conf. on Environmental Electromagnetics (Hangzhou,China) (Piscataway, NJ: IEEE)
    [2]
    Li X et al 2015 IEEE Trans. Electromagn. Compat. 57 448
    [3]
    Department of Defense 2010 Electromagnetic Environmental Effects Requirements for Systems: MIL-STD-464C (Washington, DC: Department of Defense)
    [4]
    Baum C E et al 2004 Proc. IEEE 92 1096
    [5]
    Farr E G 2012 Antenna Impulse Response with Arbitrary Source and Load Impedances: Sensor and Simulation Note 558
    [6]
    Tong L Q, Liu K F and Wang Y G 2018 Plasma Sci. Technol.20 024006
    [7]
    Zhou Q Y, Tong L Q and Liu K F 2018 Plasma Sci. Technol.20 014007
    [8]
    Ding Z J et al 2009 Rev. Sci. Instrum. 80 093303
    [9]
    Pokryvailo A, Yankelevich Y and Shapira M 2004 IEEE Trans. Plasma Sci. 32 1909
    [10]
    Mankowski J, Dickens J and Kristiansen M 1998 IEEE Trans.Plasma Sci. 26 874
    [11]
    Romanchenk I V et al 2012 Rev. Sci. Instrum. 83 074705
    [12]
    Rostov V V et al 2010 IEEE Trans. Plasma Sci. 38 2681
    [13]
    Yamasaki F S et al 2016 IEEE Trans. Plasma Sci. 44 2232
    [14]
    Ul’maskulov M R et al 2015 Rev. Sci. Instrum. 86 074702
    [15]
    Ul’maskulov M R et al 2017 IEEE Trans. Plasma Sci. 45 2623
    [16]
    Bragg J W B, Dickens J C and Neuber A A 2013 IEEE Trans.Plasma Sci. 41 232
    [17]
    Bragg J W B, Dickens J C and Neuber A A 2012 IEEE Trans.Plasma Sci. 40 2457
    [18]
    Kovalchuk O B et al 2008 Subnanosecond rise time of high voltage pulses in ferrite loaded coaxial line Proc. 35th Int.Conf. on Plasma Science (Karlsruhe Germany) (Piscataway,NJ: IEEE)
    [19]
    Bragg J W B, Dickens J C and Neuber A A 2013 J. Appl. Phys.113 064904
    [20]
    Romanchenko I V et al 2015 J. Appl. Phys. 117 214907
    [21]
    Dolan J E and Bolton H R 2000 IEE Proc.: Sci. Meas. Technol.147 237
    [22]
    Rangel E G L et al 2016 IEEE Trans. Plasma Sci. 44 2258
    [23]
    Baginski M E et al 2013 IEEE Trans. Plasma Sci. 41 2408
    [24]
    Wei K Z, Jiang R P and Li S G 2013 New Technique of Microwave Ferrite and Application (Beijing: National Defense Industry Press) (in Chinese)
    [25]
    Reale D V 2013 Coaxial ferrimagnetic based gyromagnetic nonlinear transmission lines as compact high power microwave sources PhD Thesis Texas Tech University
    [26]
    Yu J G 2010 Research of pulse sharpening based on ferrite line MSc Thesis Xidian University, Xi’an, China (in Chinese)
    [27]
    Gusev A I et al 2017 Rev. Sci. Instrum. 88 074703
  • Related Articles

    [1]Fei CHEN, Jiajia HOU, Gang WANG, Yang ZHAO, Jiaxuan LI, Shuqing WANG, Lei ZHANG, Wanfei ZHANG, Xiaofei MA, Zhenrong LIU, Xuebin LUO, Wangbao YIN, Suotang JIA. Development of miniaturized SAF-LIBS with high repetition rate acousto-optic gating for quantitative analysis[J]. Plasma Science and Technology, 2023, 25(1): 015510. DOI: 10.1088/2058-6272/ac8511
    [2]Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1
    [3]Qianyu ZHOU (周乾宇), Liqing TONG (童立青), Kefu LIU (刘克富). Research of magnetic self-balance used in a repetitive high voltage rectangular waveform pulse adder[J]. Plasma Science and Technology, 2018, 20(1): 14007-014007. DOI: 10.1088/2058-6272/aa8e93
    [4]QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13
    [5]TANG Jingfeng (唐井峰), WEI Liqiu (魏立秋), HUO Yuxin (霍玉鑫), SONG Jian (宋健), YU Daren (于达仁), ZHANG Chaohai (张潮海). Effect of Airflows on Repetitive Nanosecond Volume Discharges[J]. Plasma Science and Technology, 2016, 18(3): 273-277. DOI: 10.1088/1009-0630/18/3/10
    [6]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [7]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [8]LI Wenqin (李文琴 ), WEN Xiaoqiong ( 温小琼 ), ZHANG Jialiang (张家良). Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface[J]. Plasma Science and Technology, 2013, 15(10): 1020-1024. DOI: 10.1088/1009-0630/15/10/11
    [9]WENG Ming (翁明), XU Weijun (徐伟军). The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube[J]. Plasma Science and Technology, 2012, 14(11): 1024-1029. DOI: 10.1088/1009-0630/14/11/12
    [10]SONG Huimin(宋慧敏), ZHANG Qiaogen(张乔根), LI Yinghong(李应红), JIA Min(贾敏), WU Yun(吴云), LIANG Hua(梁华). Plasma Sheet Actuator Driven by Repetitive Nanosecond Pulses with a Negative DC Component[J]. Plasma Science and Technology, 2012, 14(4): 327-332. DOI: 10.1088/1009-0630/14/4/11
  • Cited by

    Periodical cited type(15)

    1. Priputnev, P.V., Romanchenko, I.V., Rostov, V.V. Systems and Technologies Based on Nonlinear Transmission Lines with Ferrite (Review). Technical Physics, 2024, 69(6): 1730-1741. DOI:10.1134/S1063784224060355
    2. Cui, Y., Meng, J., Yuan, Y. et al. Principle analysis and preliminary experiment of the gyromagnetic nonlinear transmission lines | [旋磁非线性传输线原理分析和初步实验]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2024, 46(3): 222-228. DOI:10.11887/j.cn.202403022
    3. Zhang, W., Lin, M., Li, H. et al. Finite element analysis of pulse sharpening effect of gyromagnetic nonlinear transmission line based on Landau-Lifshitz-Gilbert equation. Review of Scientific Instruments, 2024, 95(6): 064705. DOI:10.1063/5.0203542
    4. Stephens, J., Wright, T., Saheb, D. et al. Experimental Characterization of a Genetic Algorithm-Optimized Nonlinear Transmission Line for High Power RF Generation. IEEE Transactions on Microwave Theory and Techniques, 2024. DOI:10.1109/TMTT.2024.3457311
    5. Samoylichenko, M.A.. Multiple Modal Reservation in Flexible Printed Cables. 2023. DOI:10.1109/UralCon59258.2023.10291140
    6. Jiang, J., Cao, Y., Luo, Z. et al. Simulation research on pulse steepening technology based on ferrite transmission line | [基于铁氧体传输线的脉冲陡化技术仿真研究*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2022, 34(9): 095005. DOI:10.11884/HPLPB202234.220092
    7. Jiang, J., Luo, Z., Cao, Y. et al. Design and Performance of a Ferrite Transmission Line Sharpener for Trigger Generator Used in FLTD. IEEE Transactions on Plasma Science, 2022, 50(9): 3113-3122. DOI:10.1109/TPS.2022.3194029
    8. Cui, Y., Meng, J., Huang, L. et al. 100-MW-Level Experiments of a Gyromagnetic Nonlinear Transmission Line System. IEEE Transactions on Electron Devices, 2022, 69(9): 5248-5255. DOI:10.1109/TED.2022.3192215
    9. Greco, A.F.G., Rossi, J.O., Barroso, J.J. et al. Analysis of the sharpening effect in gyromagnetic nonlinear transmission lines using the unidimensional form of the Landau-Lifshitz-Gilbert equation. Review of Scientific Instruments, 2022, 93(6): 065101. DOI:10.1063/5.0087452
    10. Cui, Y., Meng, J., Yuan, Y. et al. Numerical Analysis on the RF Characteristics of the Gyromagnetic Nonlinear Transmission Lines. IEEE Transactions on Plasma Science, 2022, 50(5): 1188-1197. DOI:10.1109/TPS.2022.3166898
    11. Zhu, D., Meng, J., Huang, L. et al. Simulation Research on a Compact High Power Microwave Source Based on Gyromagnetic Nonlinear Transmission Lines | [基于旋磁非线性传输线的小型化强电磁脉冲源的仿真研究]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2022, 44(2): 737-744. DOI:10.11999/JEIT200912
    12. Huang, L., Meng, J., Zhu, D. et al. Minimum Spatial Filling Rate of the Ferrite Required to Excite the Microwave Oscillations in the Gyromagnetic NLTL. IEEE Transactions on Plasma Science, 2022, 50(1): 23-28. DOI:10.1109/TPS.2021.3135022
    13. Cui, Y., Meng, J., Huang, L. et al. Operation analysis of the wideband high-power microwave sources based on the gyromagnetic nonlinear transmission lines. Review of Scientific Instruments, 2021, 92(3): 034702. DOI:10.1063/5.0040323
    14. Huang, L., Meng, J., Zhu, D. et al. Field-line coupling method for the simulation of gyromagnetic nonlinear transmission line based on the maxwell-LLG system. IEEE Transactions on Plasma Science, 2020, 48(11): 3847-3853. DOI:10.1109/TPS.2020.3029524
    15. Fairbanks, A.J., Darr, A.M., Garner, A.L. A Review of Nonlinear Transmission Line System Design. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.3015715

    Other cited types(0)

Catalog

    Article views (215) PDF downloads (289) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return