Advanced Search+
Haotian HUANG (黄浩天), Lu WANG (王璐). Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal[J]. Plasma Science and Technology, 2020, 22(10): 105101. DOI: 10.1088/2058-6272/aba58c
Citation: Haotian HUANG (黄浩天), Lu WANG (王璐). Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal[J]. Plasma Science and Technology, 2020, 22(10): 105101. DOI: 10.1088/2058-6272/aba58c

Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal

Funds: This work was supported by the National Key R&D Program of China (No. 2017YFE0302000), National Natural Science Foundation of China (No. 11675059) and the Fundamental Research Funds for the Central Universities, HUST: 2019kfyXMBZ034.
More Information
  • Received Date: May 18, 2020
  • Revised Date: July 12, 2020
  • Accepted Date: July 12, 2020
  • Resonant magnetic perturbations (RMPs) are extensively applied to mitigate or suppress the edge localized mode in tokamak plasmas, but will break the axisymmetric magnetic field configuration and increase the loss of energetic ions. The mechanism of RMPs induced energetic ion loss has been extensively studied, and is mainly attributed to resonant effects. In this paper, in the perturbed non-axisymmetric tokamak pedestal, we analytically derive the equations of guiding center motion for energetic ions including the bounce/transit averaged radial drift velocity and the toroidal precession frequency modified by strong radial electric field. The loss time of energetic ions is numerically solved and its parametric dependence is analyzed in detail. We find that passing energetic ions cannot escape from the plasma, while deeply trapped energetic ions can escape from the plasma. The strong radial electric field plays an important role in modifying the toroidal precession frequency and resulting in the drift loss of trapped energetic ions. The loss time of trapped energetic ions is much smaller than the corresponding slowdown time in DIII-D pedestal. This indicates that the loss of trapped energetic ions in the perturbed non-axisymmetric pedestal is important, especially for the trapped energetic ions generated by perpendicular neutral beam injection.
  • [1]
    Gorelenkov N, Pinches S D and Toi K 2014 Nucl. Fusion 54 125001
    [2]
    Van Zeeland M A et al 2014 Plasma Phys. Control. Fusion 56 015009
    [3]
    Evans T E 2015 Plasma Phys. Control. Fusion 57 123001
    [4]
    Tani K et al 2012 Nucl. Fusion 52 013012
    [5]
    Koskela T et al 2012 Plasma Phys. Control. Fusion 54 105008
    [6]
    Sun Y et al 2015 Plasma Phys. Control. Fusion 57 045003
    [7]
    Van Zeeland M A et al 2015 Nucl. Fusion 55 073028
    [8]
    Garcia-Munoz M et al 2013 Plasma Phys. Control. Fusion 55 124014
    [9]
    Garcia-Munoz M et al 2013 Nucl. Fusion 53 123008
    [10]
    Rack M et al 2014 Plasma Phys. Control. Fusion 56 125012
    [11]
    Kim K et al 2018 Phys. Plasmas 25 122511
    [12]
    McClements K G et al 2015 Plasma Phys. Control. Fusion 57 075003
    [13]
    He K et al 2019 Nucl. Fusion 59 126026
    [14]
    Xu Y F et al 2018 Phys. Plasmas 25 012502
    [15]
    Mou M L et al 2017 Nucl. Fusion 57 046023
    [16]
    Shinohara K et al 2016 Nucl. Fusion 56 112018
    [17]
    Shaing K C, Ida K and Sabbagh S A 2015 Nucl. Fusion 55 125001
    [18]
    Pfefferlé D et al 2015 Nucl. Fusion 55 012001
    [19]
    Hamada S 1962 Nucl. Fusion 2 23
    [20]
    Liu Y Q et al 2011 Nucl. Fusion 51 083002
    [21]
    Fitzpatrick R 1993 Nucl. Fusion 33 1049
    [22]
    Taimourzadeh S et al 2019 Nucl. Fusion 59 046005
    [23]
    Kramer G J et al 2013 Plasma Phys. Control. Fusion 55 025013
    [24]
    Kurki-Suonio T et al 2017 Plasma Phys. Control. Fusion 59 014013
    [25]
    Huang J et al 2019 Plasma Sci. Technol. 21 065105
    [26]
    Särkimäki K et al 2018 Nucl. Fusion 58 076021
  • Related Articles

    [1]Xianhai PANG (庞先海), Zixi LIU (刘紫熹), Shixin XIU (修士新), Dingyu FENG (冯顶瑜). Arc characteristics during the instability stage on transverse magnetic field contacts[J]. Plasma Science and Technology, 2018, 20(9): 95505-095505. DOI: 10.1088/2058-6272/aac50a
    [2]Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
    [3]Yi CHEN (陈毅), Fei YANG (杨飞), Hao SUN (孙昊), Yi WU (吴翊), Chunping NIU (纽春萍), Mingzhe RONG (荣命哲). Influence of the axial magnetic field on sheath development after current zero in a vacuum circuit breaker[J]. Plasma Science and Technology, 2017, 19(6): 64003-064003. DOI: 10.1088/2058-6272/aa65c8
    [4]WANG Cheng (王城), CHEN Tang (陈瑭), LI Wanwan (李皖皖), ZHA Jun (査俊), XIA Weidong (夏维东). Axial Magnetic Field Effects on Xenon Short-Arc Lamps[J]. Plasma Science and Technology, 2014, 16(12): 1096-1099. DOI: 10.1088/1009-0630/16/12/03
    [5]ZHU Liying(朱立颖), WU Jianwen(武建文), JIANG Yuan(蒋原). Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate-Frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459. DOI: 10.1088/1009-0630/16/5/03
    [6]LIU Wenzheng(刘文正), WANG Hao(王浩), DOU Zhijun(窦志军). Impact of the Insulator on the Electric Field and Generation Characteristics of Vacuum Arc Metal Plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. DOI: 10.1088/1009-0630/16/2/09
    [7]WANG Lijun (王立军), YANG Dingge (杨鼎革), JIA Shenli (贾申利), WANG Liuhuo (王流火), SHI Zongqian (史宗谦). Vacuum Arc Characteristics Simulation at Different Moments Under Power-Frequency Current[J]. Plasma Science and Technology, 2012, 14(3): 227-234. DOI: 10.1088/1009-0630/14/3/08
    [8]G.Yu. YUSHKOV, K.P. SAVKIN, A.G. NIKOLAEV, E.M. OKS, A.V. VODOPYANOV, I.V. IZOTOV, D.A. MANSFELD. Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation[J]. Plasma Science and Technology, 2011, 13(5): 596-599.
    [9]ZHANG Ling, JIA Shenli, WANG Lijun, SHI Zongqian. Simulation of vacuum arc characteristics under four kinds of axial magnetic fields and comparison with experimental results[J]. Plasma Science and Technology, 2011, 13(4): 462-469.
    [10]JIA Shenli, SONG Xiaochuan, HUO Xintao, SHI Zongqian, WANG Lijun. Investigation of Vacuum Arc Voltage Characteristics Under Different Axial Magnetic Field Profiles[J]. Plasma Science and Technology, 2010, 12(6): 729-733.
  • Cited by

    Periodical cited type(7)

    1. Santos, J.M., Silva, A., da Silva, F. et al. Design and performance analysis of a High Field Side antenna for Plasma Position Reflectometry control on DTT. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114275
    2. Ye, K., Zhou, Z., Zhang, T. et al. Experimental study of core MHD behavior and a novel algorithm for rational surface detection based on profile reflectometry in EAST. Plasma Science and Technology, 2024, 26(3): 034010. DOI:10.1088/2058-6272/ad0f0a
    3. Ricardo, E., da Silva, F., Heuraux, S. et al. Simulation and data processing techniques to design optimized PPR systems on plasma fusion devices. Computer Physics Communications, 2024. DOI:10.1016/j.cpc.2023.108945
    4. Liu, F., Shi, G., Wang, W. et al. Effects of the ground-electrode temperature on electrical and optical characteristics of a coaxial dielectric barrier discharge in atmospheric pressure air. Physica Scripta, 2023, 98(12): 125605. DOI:10.1088/1402-4896/ad0801
    5. Da Silva, F., Ricardo, E., Ferreira, J. et al. Benchmarking 2D against 3D FDTD codes for the assessment of the measurement performance of a low field side plasma position reflectometer applicable to IDTT. Journal of Instrumentation, 2022, 17(1): C01017. DOI:10.1088/1748-0221/17/01/C01017
    6. Lips, J., Heuraux, S., Lechte, C. et al. On frequency-independent horn antenna design for plasma positioning reflectometers, from simulation to prototype testing. Journal of Instrumentation, 2021, 16(7): P07040. DOI:10.1088/1748-0221/16/07/P07040
    7. da Silva, F., Ferreira, J., Santos, J. et al. Assessment of measurement performance for a low field side IDTT plasma position reflectometry system. Fusion Engineering and Design, 2021. DOI:10.1016/j.fusengdes.2021.112405

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return