Advanced Search+
Yue YANG (杨月), Boyuan LI (李博原), Yuchi WU (吴玉迟), Bin ZHU (朱斌), Bo ZHANG (张博), Zhimeng ZHANG (张智猛), Minghai YU (于明海), Feng LU (卢峰), Kainan ZHOU (周凯南), Lianqiang SHAN (单连强), Lihua CAO (曹莉华), Zongqing ZHAO (赵宗清), Weimin ZHOU (周维民), Yuqiu GU (谷渝秋). Manipulation and optimization of electron transport by nanopore array targets[J]. Plasma Science and Technology, 2021, 23(1): 15001-015001. DOI: 10.1088/2058-6272/abbd37
Citation: Yue YANG (杨月), Boyuan LI (李博原), Yuchi WU (吴玉迟), Bin ZHU (朱斌), Bo ZHANG (张博), Zhimeng ZHANG (张智猛), Minghai YU (于明海), Feng LU (卢峰), Kainan ZHOU (周凯南), Lianqiang SHAN (单连强), Lihua CAO (曹莉华), Zongqing ZHAO (赵宗清), Weimin ZHOU (周维民), Yuqiu GU (谷渝秋). Manipulation and optimization of electron transport by nanopore array targets[J]. Plasma Science and Technology, 2021, 23(1): 15001-015001. DOI: 10.1088/2058-6272/abbd37

Manipulation and optimization of electron transport by nanopore array targets

Funds: This work was supported by the National Key R&D Program of China (Grant No. 2016YFA0401100), the Science and Technology on Plasma Physics Laboratory (Grant Nos. 6142A04180201 and JCKYS2020212006), National Natural Science Foundation of China (Grant No. 11975214) and the Science Challenge Program (Grant Nos. TZ2016005 and TZ2018005).
More Information
  • Received Date: July 14, 2020
  • Revised Date: September 28, 2020
  • Accepted Date: September 29, 2020
  • The transport of sub-picosecond laser-driven fast electrons in nanopore array targets is studied. Attributed to the generation of micro-structured magnetic fields, most fast electron beams are proven to be effectively guided and restricted during the propagation. Different transport patterns of fast electrons in the targets are observed in experiments and reproduced by particle-in-cell simulations, representing two components: initially collimated low-energy electrons in the center and high-energy scattering electrons turning into surrounding annular beams. The critical energy for confined electrons is deduced theoretically. The electron guidance and confinement by the nano-structured targets offer a technological approach to manipulate and optimize the fast electron transport by properly modulating pulse parameters and target design, showing great potential in many applications including ion acceleration, microfocus x-ray sources and inertial confinement fusion.
  • [1]
    Chodura R 1982 Phys. Fluid 25 1628
    [2]
    Riemann K U 1991 J. Phys. D: Appl. Phys. 24 493
    [3]
    Riemann K U 2009 Plasma Sources Sci. Technol. 18 014006
    [4]
    Ghim Y C and Hershkowitz N 2009 Appl. Phys. Lett. 94 151503
    [5]
    Femandez Palop J I et al 1995 J. Appl. Phys. 77 2937
    [6]
    Femandez Palop J I et al 1996 Surf. Coat. Tech. 84 341
    [7]
    Wang Z X et al 2003 Chin. Phys. Lett. 20 1537
    [8]
    Gong Y et al 2010 Chin. J. Comput. Phys. 27 883
    [9]
    Zhao X Y et al 2011 Acta Phys. Sin. 60 045205 (in Chinese)
    [10]
    Zou X et al 2004 Chin. Phys. Lett. 21 1572
    [11]
    Zou X et al 2011 Chin. Phys. Lett. 28 125201
    [12]
    Liu H P et al 2012 Acta Phys. Sin. 61 035201 (in Chinese)
    [13]
    Liu H P et al 2016 Acta Phys. Sin. 65 245201 (in Chinese)
    [14]
    Liu H P and Zou X 2020 Acta Phys. Sin. 69 025201 (in Chinese)
    [15]
    Tsallis C 1988 J. Stat. Phys. 52 479
    [16]
    Hatami M M 2015 Phys. Plasmas 22 013508
    [17]
    Hatami M M 2015 Phys. Plasmas 22 023506
    [18]
    Hatami M M, Tribeche M and Mamun A A 2018 Phys.Plasmas 25 094502
    [19]
    Zhao X Y et al 2019 Acta Phys. Sin. 68 185204 (in Chinese)
    [20]
    Liu Y, Liu S Q and Xu K 2012 Phys. Plasmas 19 073702
    [21]
    Liu Y, Liu S Q and Zhou L 2013 Phys. Plasmas 20 043702
    [22]
    Tantawy S A E, Tribeche M and Moslem W M 2012 Phys.Plasmas 19 032104
    [23]
    Emamuddin M et al 2013 Phys. Plasmas 20 083708
    [24]
    Navab Safa N, Ghomi H and Niknam A R 2014 Phys. Plasmas 21 082111
    [25]
    Mehdipoor M and Mohsenpour T 2015 Phys. Plasmas 22 112110
    [26]
    Borgohain D R, Saharia K and Goswami K S 2016 Phys.Plasmas 23 122113
    [27]
    Borgohain D R and Saharia K 2018 Phys. Plasmas 25 032122
    [28]
    Basnet S and Khanal R 2019 Phys. Plasmas 26 043516
    [29]
    Gyergyek T and Kovačič J 2017 Phys. Plasmas 24 063505
    [30]
    Gyergyek T and Kovačič J 2017 Phys. Plasmas 24 063506
    [31]
    Liu J Y et al 2011 Phys. Plasmas 18 013506
    [32]
    Ou J and Yang J H 2012 Phys. Plasmas 19 113504
    [33]
    Li J J, Ma J X and Wei Z A 2013 Phys. Plasmas 20 063503
    [34]
    Wang T T, Ma J X and Wei Z A 2015 Phys. Plasmas 22 093505
  • Related Articles

    [1]Fuqiong WANG, Xiang GU, Jiankun HUA, Yumin WANG, Xiaokun BO, Bo CHEN, Yuejiang SHI, Shuai XU, Erhui WANG, Yunfeng LIANG, the EHL-2 Team. Divertor heat flux challenge and mitigation in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024009. DOI: 10.1088/2058-6272/adadb8
    [2]Jianqing CAI, Yunfeng LIANG, Alexander KNIEPS, Dongkai QI, Erhui WANG, Haoming XIANG, Liang LIAO, Jie HUANG, Jie YANG, Jia HUANG, Jianwen LIU, Philipp DREWS, Shuai XU, Xiang GU, Yichen GAO, Yu LUO, Zhi LI, the EXL-50 Team. Improved training framework in a neural network model for disruption prediction and its application on EXL-50[J]. Plasma Science and Technology, 2024, 26(5): 055102. DOI: 10.1088/2058-6272/ad1571
    [3]Hui LI (李慧), Yanlin FU (付艳林), Jiquan LI (李继全), Zhengxiong WANG (王正汹). Machine learning of turbulent transport in fusion plasmas with neural network[J]. Plasma Science and Technology, 2021, 23(11): 115102. DOI: 10.1088/2058-6272/ac15ec
    [4]Jiaolong DONG (董蛟龙), Jianchao LI (李建超), Yonghua DING (丁永华), Xiaoqing ZHANG (张晓卿), Nengchao WANG (王能超), Da LI (李达), Wei YAN (严伟), Chengshuo SHEN (沈呈硕), Ying HE (何莹), Xiehang REN (任颉颃). Machine learning application to predict the electron temperature on the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(8): 85101-085101. DOI: 10.1088/2058-6272/ac0685
    [5]Kai ZHANG (张凱), Dalong CHEN (陈大龙), Bihao GUO (郭笔豪), Junjie CHEN (陈俊杰), Bingjia XIAO (肖炳甲). Density limit disruption prediction using a long short-term memory network on EAST[J]. Plasma Science and Technology, 2020, 22(11): 115602. DOI: 10.1088/2058-6272/abb28f
    [6]Baoyue CHAI (柴宝玥), Yingying LI (李颖颖), Ze CHEN (陈泽), Wei TAO (陶巍), Yixuan ZHOU (周艺轩), Shifeng MAO (毛世峰), Zhengping LUO (罗正平), Yi YU (余羿), Bo LYU (吕波), Minyou YE (叶民友). Fast estimation of ion temperature from EAST charge exchange recombination spectroscopy using neural network[J]. Plasma Science and Technology, 2019, 21(10): 105103. DOI: 10.1088/2058-6272/ab2674
    [7]Yonghua DING (丁永华), Zhongyong CHEN (陈忠勇), Zhipeng CHEN (陈志鹏), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Qiming HU (胡启明), Bo RAO (饶波), Jie CHEN (陈杰), Zhifeng CHENG (程芝峰), Li GAO (高丽), Zhonghe JIANG (江中和), Lu WANG (王璐), Zhijiang WANG (王之江), Xiaoqing ZHANG (张晓卿), Wei ZHENG (郑玮), Ming ZHANG (张明), Ge ZHUANG (庄革), Qingquan YU (虞清泉), Yunfeng LIANG (梁云峰), Kexun YU (于克训), Xiwei HU (胡希伟), Yuan PAN (潘垣), Kenneth William GENTLE, the J-TEXT Team. Overview of the J-TEXT progress on RMP and disruption physics[J]. Plasma Science and Technology, 2018, 20(12): 125101. DOI: 10.1088/2058-6272/aadcfd
    [8]WANG Bo (王勃), Robert GRANETZ, XIAO Bingjia (肖炳甲), LI Jiangang (李建刚), YANG Fei (杨飞), LI Junjun (李君君), CHEN Dalong (陈大龙). Establishment and Assessment of Plasma Disruption and Warning Databases from EAST[J]. Plasma Science and Technology, 2016, 18(12): 1162-1168. DOI: 10.1088/1009-0630/18/12/04
    [9]DING Yonghua (丁永华), JIN Xuesong (金雪松), CHEN Zhenzhen (陈真真), ZHUANG Ge (庄革). Neural Network Prediction of Disruptions Caused by Locked Modes on J-TEXT Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1154-1159. DOI: 10.1088/1009-0630/15/11/14
    [10]ZHUANG Huidong (庄会东), ZHANG Xiaodong (张晓东). Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7[J]. Plasma Science and Technology, 2013, 15(8): 745-749. DOI: 10.1088/1009-0630/15/8/05
  • Cited by

    Periodical cited type(6)

    1. Sun, T., Jiang, X., Li, Z. et al. Characterization of fast ion loss in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024002. DOI:10.1088/2058-6272/ad8dfb
    2. Wang, F., Gu, X., Hua, J. et al. Divertor heat flux challenge and mitigation in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024009. DOI:10.1088/2058-6272/adadb8
    3. Shi, Y., Song, X., Guo, D. et al. Strategy and experimental progress of the EXL-50U spherical torus in support of the EHL-2 project. Plasma Science and Technology, 2025, 27(2): 024003. DOI:10.1088/2058-6272/ad9e8f
    4. Li, Z., Sun, T., Liu, B. et al. Evaluation of thermal and beam-thermal p-11B fusion reactions in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024004. DOI:10.1088/2058-6272/ad9da2
    5. Dong, L., Li, L., Liu, W. et al. Instabilities of ideal magnetohydrodynamics mode and neoclassical tearing mode stabilization by electron cyclotron current drive for EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024006. DOI:10.1088/2058-6272/ada421
    6. Gu, X., Yin, G., Shi, Y. et al. Poloidal field system and advanced divertor equilibrium configuration design of the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024011. DOI:10.1088/2058-6272/adae72

    Other cited types(0)

Catalog

    Article views (133) PDF downloads (207) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return