Advanced Search+
Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b
Citation: Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b

Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma

Funds: This research was supported by National Natural Science Foundation of China (Nos. 11 965 019, 42 004 131 and 61 863 032).
More Information
  • Received Date: November 16, 2020
  • Revised Date: January 27, 2021
  • Accepted Date: January 27, 2021
  • The inhomogeneity is introduced by a nonzero density gradient which separates the plasma into two different regions where plasma density are constant. The Alfvén waves, the phase mixing and the fast magnetosonic wave are excited by the boundary condition in inhomogeneous magnetized plasma. By using the Hall–magnetohydrodynamics (MHD) model, it is found that there are Alfvén waves in the homogeneous regions, while the phase mixing appears in the inhomogeneous region. The interesting result is that a fast magnetosonic wave is excited in a different direction which has a nonzero angle between the wave propagation direction and the direction of the background magnetic field. The dependence of the propagation direction of the excited fast magnetosonic wave and its strength of the magnetic field on the plasma parameters are given numerically. The results show that increasing both the driving frequency and the ratio of magnetic pressure to thermal pressure will increase the acceleration of the electrons. The electron acceleration also depends on the inhomogeneity parameters.
  • [1]
    Heyvaerts J and Priest E R 1983 Astron. Astrophys. 117 220
    [2]
    Malara F et al 1992 Astrophys. J. 396 297
    [3]
    Malara F, Primavera L and Veltri P 1996 Astrophys. J. 459 347
    [4]
    Nakariakov V M, Roberts B and Murawski K 1997 Sol. Phys. 175 93
    [5]
    Nakariakov V M, Roberts B and Murawski K 1998 Astron. Astrophys. 332 795
    [6]
    DeMoortel I, Hood A W and Arber T D 2000 Astron. Astrophys. 354 334–48
    [7]
    Botha G J J et al 2000 Astron. Astrophys. 363 1186
    [8]
    Tsiklauri D, Arber T D and Nakariakov V M 2001 Astron. Astrophys. 379 1098
    [9]
    Hood A W, Brooks S J and Wright A N 2002 Proc. Roy. Soc. Lond. A 458 2307
    [10]
    Tsiklauri D, Nakariakov V M and Arber T D 2002 Astron. Astrophys. 395 285
    [11]
    Tsiklauri D, Nakariakov V M and Rowlands G 2003 Astron. Astrophys. 400 1051
    [12]
    Pascoe D J, Wright A N and De Moortel I 2010 Phys. Scr. 711 990
    [13]
    McLaughlin J A, De Moortel I and Hood A W 2011 Astron. Astrophys. 527 A149
    [14]
    Zheng J G, Chen Y H and Yu M Y 2016 Phys. Scr. 91 015601
    [15]
    Zheng J G, Chen Y H and Yu M Y 2016 Phys. Scr. 91 035601
    [16]
    Pagano P and De Moortel I 2017 Astron. Astrophys. 601 A107
    [17]
    Shoda M, Yokoyama T and Suzuki T K 2018 Astrophys. J. 190 853
    [18]
    Shoda M, Yokoyama T and Suzuki T K 2018 Astrophys. J. 17 860
    [19]
    Génot V, Louarn P and Mottez F 2004 Ann. Geophys. 22 2081
    [20]
    Tsiklauri D, Sakai J-I and Saito S 2005 Astron. Astrophys. 435 1105
    [21]
    Tsiklauri D and Haruki T 2008 Phys. Plasmas 15 112902
    [22]
    Tsiklauri D 2011 Phys. Plasmas 18 092903
    [23]
    Tsiklauri D 2012 Phys. Plasmas 19 082903
    [24]
    Threlfall J, McClements K G and De Moortel I 2011 Phys. Scr. 525 A155
    [25]
    Vásconez C L et al 2015 Astron. Astrophys. 815 7
    [26]
    Pucci F et al 2016 J. Geophys. Res. Space Physics 121 1024
    [27]
    Pezzi O et al 2017 Astrophys. J. 166 834
    [28]
    Pezzi O et al 2017 J. Plasma Phys. 83 905830105
    [29]
    Pezzi O et al 2017 Phys. Rev. E 96 02320
    [30]
    Moffatt H K 1978 Field Generation in Electrically Conducting Fluids (Cambridge: Cambridge University Press) (https:// doi.org/10.1002/zamm.19790591150)
    [31]
    Parker E N 1979 Cosmical Magnetic Fields: Their Origin and Their Activity (Oxford: Oxford University Press)
    [32]
    Shaikh D and Shukla P K 2009 Phys. Rev. Lett. 102 045004
    [33]
    Dedner A et al 2002 J. Comput. Phys. 175 645
    [34]
    Waagan K 2009 J. Comput. Phys. 228 8609
    [35]
    Loverich J et al 2011 XLII AIAA Plasmadynamics and Lasers Conf. 2011 4012
    [36]
    Mio K et al 1976 Phys. Soc. Jpn. 41 1
  • Related Articles

    [1]Borui ZHENG, Qian ZHANG, Taifei ZHAO, Guozheng SONG, Quanlong CHEN. Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator[J]. Plasma Science and Technology, 2023, 25(2): 025503. DOI: 10.1088/2058-6272/ac8cd4
    [2]Fangping WANG(王芳平), Juanfang HAN (韩娟芳), Wenshan DUAN (段文山). Modulational instability of the coupled waves between fast magnetosonic wave and slow Alfvén wave in the laser–plasma interaction[J]. Plasma Science and Technology, 2021, 23(1): 15002-015002. DOI: 10.1088/2058-6272/abc676
    [3]Yanqing HUANG (黄艳清), Tianyang XIA (夏天阳), Bin GUI (桂彬). Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes[J]. Plasma Science and Technology, 2018, 20(4): 45101-045101. DOI: 10.1088/2058-6272/aaa4f1
    [4]Imran Ali KHAN, G MURTAZA. Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode[J]. Plasma Science and Technology, 2018, 20(3): 35302-035302. DOI: 10.1088/2058-6272/aaa457
    [5]Lingjie LI (李灵杰), Zhiwei MA (马志为), Licheng WANG (王理程). Generation of Alfvén wave energy during magnetic reconnection in Hall MHD[J]. Plasma Science and Technology, 2017, 19(10): 105001. DOI: 10.1088/2058-6272/aa7c17
    [6]LI Xujing (李旭静), L. E. ZAKHAROV, S. A. GALKIN. Adaptive Grids in Simulations of Toroidal Plasma Starting from Magneto-Hydrodynamic Equilibrium[J]. Plasma Science and Technology, 2015, 17(2): 97-104. DOI: 10.1088/1009-0630/17/2/02
    [7]DUANMU Gang(端木刚), ZHAO Changming(赵长明), LIANG Chao(梁超), XU Yuemin(徐跃民). Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave[J]. Plasma Science and Technology, 2014, 16(11): 1059-1062. DOI: 10.1088/1009-0630/16/11/11
    [8]LIU Hui (刘辉), TANG Ke (唐柯), GAO Ge (高格), FU Peng (傅鹏), et al.. Study of the EAST Fast Control Power Supply Based on Carrier Phase-Shift PWM[J]. Plasma Science and Technology, 2013, 15(9): 950-954. DOI: 10.1088/1009-0630/15/9/22
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.
  • Cited by

    Periodical cited type(7)

    1. Santos, J.M., Silva, A., da Silva, F. et al. Design and performance analysis of a High Field Side antenna for Plasma Position Reflectometry control on DTT. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114275
    2. Ye, K., Zhou, Z., Zhang, T. et al. Experimental study of core MHD behavior and a novel algorithm for rational surface detection based on profile reflectometry in EAST. Plasma Science and Technology, 2024, 26(3): 034010. DOI:10.1088/2058-6272/ad0f0a
    3. Ricardo, E., da Silva, F., Heuraux, S. et al. Simulation and data processing techniques to design optimized PPR systems on plasma fusion devices. Computer Physics Communications, 2024. DOI:10.1016/j.cpc.2023.108945
    4. Liu, F., Shi, G., Wang, W. et al. Effects of the ground-electrode temperature on electrical and optical characteristics of a coaxial dielectric barrier discharge in atmospheric pressure air. Physica Scripta, 2023, 98(12): 125605. DOI:10.1088/1402-4896/ad0801
    5. Da Silva, F., Ricardo, E., Ferreira, J. et al. Benchmarking 2D against 3D FDTD codes for the assessment of the measurement performance of a low field side plasma position reflectometer applicable to IDTT. Journal of Instrumentation, 2022, 17(1): C01017. DOI:10.1088/1748-0221/17/01/C01017
    6. Lips, J., Heuraux, S., Lechte, C. et al. On frequency-independent horn antenna design for plasma positioning reflectometers, from simulation to prototype testing. Journal of Instrumentation, 2021, 16(7): P07040. DOI:10.1088/1748-0221/16/07/P07040
    7. da Silva, F., Ferreira, J., Santos, J. et al. Assessment of measurement performance for a low field side IDTT plasma position reflectometry system. Fusion Engineering and Design, 2021. DOI:10.1016/j.fusengdes.2021.112405

    Other cited types(0)

Catalog

    Article views (184) PDF downloads (290) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return