Advanced Search+
Yanqing HUANG (黄艳清), Tianyang XIA (夏天阳), Bin GUI (桂彬). Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes[J]. Plasma Science and Technology, 2018, 20(4): 45101-045101. DOI: 10.1088/2058-6272/aaa4f1
Citation: Yanqing HUANG (黄艳清), Tianyang XIA (夏天阳), Bin GUI (桂彬). Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes[J]. Plasma Science and Technology, 2018, 20(4): 45101-045101. DOI: 10.1088/2058-6272/aaa4f1

Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes

Funds: Foresight Program in the field of Plasma Physics (NSFC: No. 11261140328 and NRF: No. z012K2A2A6000443). This work was supported by program of Fusion under Contract Nos. 11405215, 11505236 and 11675217, the Reactor Physics and Digital Tokamak with the CAS ‘One-National Magnetic Confinement Fusion Science Program of Three-Five’ Strategic Planning and the JSPS-NRF-NSFC A3 China under Contract Nos. 2015GB101003, 2014GB106001 and 2013GB111002.
More Information
  • Received Date: October 26, 2017
  • The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which is calculated through the numerical integration of the terms with different physics. This method is able to reveal the contributions of the different terms to the total growth rate. The diamagnetic effect stabilizes the ideal ballooning modes through inhibiting the contribution of curvature. The toroidal rotation effect is also able to suppress the curvature-driving term, and the stronger shearing rate leads to a stronger stabilization effect. In addition, through linear analysis using the energy form, the curvature-driving term provides the free energy absorbed by the line-bending term, diamagnetic term and convective term.
  • [1]
    Connor J W, Kirk A and Wilson H R 2008 AIP Conf. Proc. 1013 174
    [2]
    Connor J W 1998 Plasma Phys. Control. Fusion 40 191
    [3]
    Snyder P B et al 2007 Nucl. Fusion 47 961
    [4]
    Oyama N et al 2005 Nucl. Fusion 45 871
    [5]
    Connor J W, Hastie R J and Taylor J B 1978 Phys. Rev. Lett. 40 396
    [6]
    Connor J W et al 1998 Phys. Plasmas 5 2687
    [7]
    Snyder P B et al 2002 Phys. Plasmas 9 2037
    [8]
    Xu X Q et al 2010 Phys. Rev. Lett. 105 175005
    [9]
    Oyama N et al 2007 Plasma Phys. Control. Fusion 49 249
    [10]
    Aiba N et al 2009 Nucl. Fusion 49 065015
    [11]
    Aiba N et al 2010 Nucl. Fusion 50 045002
    [12]
    Aiba N et al 2011 Nucl. Fusion 51 073012
    [13]
    Xi P W et al 2012 Phys. Plasmas 19 092503
    [14]
    Cheng S K, Zhu P and Banerjee D 2017 Phys. Plasmas 24 092510
    [15]
    Chen J G et al 2017 Phys. Plasmas 24 050704
    [16]
    Xi P W et al 2013 Nucl. Fusion 53 113020
    [17]
    Xia T Y et al 2012 Contrib. Plasma Phys. 52 353
    [18]
    XiaTYandXuXQ 2013 Phys. Plasmas 20 052102
    [19]
    Hazeltine R D and Meiss J D 1985 Phys. Rep. 121 1
    [20]
    Miller R L and Van Dam J W 1987 Nucl. Fusion 27 2101
    [21]
    Xu X Q, Ma J F and Li G Q 2014 Phys. Plasmas 21 120704
    [22]
    Ishizawa A and Nakajima N 2007 Nucl. Fusion 47 1540
    [23]
    Tobita K et al 1995 Nucl. Fusion 35 1585
    [24]
    Bekheit A H 2013 J. Fusion Energ. 32 410
    [25]
    Dudson B D et al 2009 Comput. Phys. Commun. 180 1467
    [26]
    Dong J Q and Horton W 1993 Phys. Fluids B Plasma Phys. 5 1581
    [27]
    Xia T Y, Xu X Q and Xi P W 2013 Nucl. Fusion 53 073009
    [28]
    Dong J Q et al 1994 Phys. Plasma 1 3250
    [29]
    Horton W et al 2005 Phys. Plasmas 12 022303
    [30]
    Xia T Y et al 2017 Nucl. Fusion 57 116016
  • Related Articles

    [1]Yi ZHANG (张毅), Zhibin GUO (郭志彬). Nonlinear phase dynamics of ideal kink mode in the presence of shear flow[J]. Plasma Science and Technology, 2021, 23(4): 45101-045101. DOI: 10.1088/2058-6272/abe274
    [2]Hongyu WANG (王虹宇), Pengfei LIU (刘鹏飞), Zhihong LIN (林志宏), Wenlu ZHANG (张文禄). Linear gyrokinetic simulations of reversed shear Alfvén eigenmodes and ion temperature gradient modes in DIII-D tokamak[J]. Plasma Science and Technology, 2021, 23(1): 15101-015101. DOI: 10.1088/2058-6272/abc871
    [3]W BUANGAM, J GARCIA, T ONJUN, JET Contributors. Impact of E × B flow shear stabilization on particle confinement and density peaking at JET[J]. Plasma Science and Technology, 2020, 22(6): 65101-065101. DOI: 10.1088/2058-6272/ab7b0e
    [4]Yemin HU (胡业民), M S ZHU (朱名盛), Wenfeng GUO (郭文峰). Numerical study of equilibrium solutions for axisymmetric plasmas with toroidal flow obtained using Solovev approach[J]. Plasma Science and Technology, 2019, 21(5): 55102-055102. DOI: 10.1088/2058-6272/ab004a
    [5]Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f
    [6]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [7]LI Zebin (李泽彬), SUN Guoya (孙国亚), Ihor HOLOD, XIAO Yong (肖湧), et al. GTC Simulation of Ideal Ballooning Mode in Tokamak Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 499-505. DOI: 10.1088/1009-0630/15/6/03
    [8]FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11
    [9]ZHOU Chenglong (周铖龙), MA Yugang (马余刚), FANG Deqing (方德清). Shear Viscosity to Entropy Density Ratio in Au+Au Central Collisions[J]. Plasma Science and Technology, 2012, 14(7): 585-587. DOI: 10.1088/1009-0630/14/7/04
    [10]WU Junhui, WANG Xiaohua, MA Zhiying, RONG Mingzhe, YAN Jing. Numerical Simulation of Gas Flow during Arcing Process for 252kV Puffer Circuit Breakers[J]. Plasma Science and Technology, 2011, 13(6): 730-734.
  • Cited by

    Periodical cited type(20)

    1. Kong, W., Dong, H., Wu, J. et al. Control of frictional and total drag by porous media at high Reynolds number wall turbulence conditions. Physics of Fluids, 2025, 37(3): 035205. DOI:10.1063/5.0260094
    2. Zheng, B., Qi, S., Yu, M. et al. Turbulent drag reduction by sector-shaped counter-flow dielectric barrier discharge plasma actuator. Chinese Physics B, 2025, 34(2): 025205. DOI:10.1088/1674-1056/ada1c6
    3. Su, Z., Zong, H., Liang, H. et al. Investigation of pulsed direct-current plasma jets in a turbulent boundary layer. Physics of Fluids, 2024, 36(3): 035128. DOI:10.1063/5.0190336
    4. Zheng, H., Gao, C., Wu, B. et al. Drag reduction control of turbulent boundary layer based on plasma actuation | [基于等离子体激励的湍流边界层减阻控制]. Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38(5): 1157-1165. DOI:10.13224/j.cnki.jasp.20210546
    5. SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019
    6. Yan, R., Wu, B., Gao, C. et al. Enhanced heat transfer in Poiseuille-Rayleigh-Bénard flows based on dielectric-barrier-discharge plasma actuation. Physics of Plasmas, 2023, 30(3): 033501. DOI:10.1063/5.0131414
    7. Su, Z., Zong, H., Liang, H. et al. Optimization in frequency characteristics of an oscillating dielectric barrier discharge plasma actuator. Sensors and Actuators A: Physical, 2023. DOI:10.1016/j.sna.2023.114195
    8. Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f
    9. Zhang, X., Wang, X. RESEARCH PROGRESS AND OUTLOOK OF FLOW FIELD CREATED BY DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATORS DRIVEN BY A SINUSOIDAL ALTERNATING CURRENT HIGH-VOLTAGE POWER | [正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 285-298. DOI:10.6052/0459-1879-22-377
    10. Zhao, J., Zhang, H., Meng, X. et al. Aerodynamic effects of a tube-type AC-SDBD plasma actuator. 2023. DOI:10.2514/6.2023-3747
    11. Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083
    12. Chen, J., Zong, H., Song, H. et al. AI-based real-time noise reduction of flow field pressure signals under plasma electromagnetic interference | [等离子体电磁干扰下圆柱绕流壁面压力信号 AI 实时降噪]. Shiyan Liuti Lixue/Journal of Experiments in Fluid Mechanics, 2023, 37(4): 59-65. DOI:10.11729/syltlx20230030
    13. Zong, H., Wu, Y., Liang, H. et al. Experimental Investigation and Intelligent Optimization of Airfoil Zero-Lift Drag Reduction with Plasma Actuators. AIAA Journal, 2023, 61(1): 223-240. DOI:10.2514/1.J062099
    14. Hui, W., Meng, X., Li, H. et al. Flow induced by a pair of plasma actuators on a circular cylinder in still air under duty-cycle actuation. Physics of Fluids, 2022, 34(12): 123613. DOI:10.1063/5.0124744
    15. ZHENG, B., JIN, Y., YU, M. et al. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation. Plasma Science and Technology, 2022, 24(11): 114003. DOI:10.1088/2058-6272/ac72e2
    16. Zong, H., Su, Z., Liang, H. et al. Experimental investigation and reduced-order modeling of plasma jets in a turbulent boundary layer for skin-friction drag reduction. Physics of Fluids, 2022, 34(8): 0104609. DOI:10.1063/5.0104609
    17. Li, Y., Wu, Y., Liang, H. et al. Exploration and outlook of plasma-actuated gas dynamics | [等离子体激励气动力学探索与展望]. Advances in Mechanics, 2022, 52(1): 1-32. DOI:10.6052/1000-0992-21-044
    18. Zhu, Z., Fradera-Soler, P., Jo, W. et al. Numerical simulation of the flow around a square cylinder under plasma actuator control. Physics of Fluids, 2021, 33(12): 123611. DOI:10.1063/5.0072081
    19. Zhao, L., Xiao, Z., Liu, F. Simulation of flow induced by single-dielectric-barrier-discharge plasma actuator using a high-order flux-reconstruction scheme. Physics of Fluids, 2021, 33(4): 047108. DOI:10.1063/5.0046900
    20. Li, Y., Gao, C., Wu, B. et al. Turbulent boundary layer control with a spanwise array of DBD plasma actuators. Plasma Science and Technology, 2021, 23(2): 025501. DOI:10.1088/2058-6272/abce0d

    Other cited types(0)

Catalog

    Article views (220) PDF downloads (501) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return