Advanced Search+
FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11
Citation: FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11

Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow

Funds: supported by National Natural Science Foundation of China(No. 90916015)
More Information
  • Received Date: September 19, 2010
  • The interaction of laser-induced plasma and bow shock over a blunt body is investigated numerically in an M=6.5 supersonic flow. A ray-tracing method is used for simulating the process of laser focusing. The gas located at the focused zone is ionized and broken down and transformed into plasma. In a supersonic flow the plasma moves downstream and begins to interact with the bow shock when it approaches the surface of the blunt body. The parameters of flowfield and blunt body surface are changed due to the interaction. By analyzing phenomena occurring in the complex unsteady flowfield during the interaction in detail, we can better understand the change of pressure on the blunt body surface and the mechanism of drag reduction by laser energy deposition. The results show that the bow shock is changed into an oblique shock due to the interaction of the laser-induced low-density zone with the bow shock, so the wave drag of the blunt body is reduced.
  • Related Articles

    [1]Wei XIE, Zhenbing LUO, Yan ZHOU, Qiang LIU, Xiong DENG, Yinxin ZHU. Experimental and numerical study on double wedge shock/shock interaction controlled by a single-pulse plasma synthetic jet[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ad91e9
    [2]Yiwen LI (李益文), Zhong ZHUANG (庄重), Lei PANG (庞磊), Pengzhen DUAN (段朋振), Zhiwen DING (丁志文), Bailing ZHANG (张百灵). Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow[J]. Plasma Science and Technology, 2019, 21(6): 65502-065502. DOI: 10.1088/2058-6272/ab01f5
    [3]Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2
    [4]Junying WU (伍俊英), Long WANG (汪龙), Yase LI (李雅瑟), Lijun YANG (杨利军), Manzoor SULTAN, Lang CHEN (陈朗). Characteristics of a plasma flow field produced by a metal array bridge foil explosion[J]. Plasma Science and Technology, 2018, 20(7): 75501-075501. DOI: 10.1088/2058-6272/aab783
    [5]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [6]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [7]ZHAO Guoming(赵国明), SUN Qian(孙倩), ZHAO Shuxia(赵书霞), GAO Shuxia(高书侠), ZHANG Lianzhu(张连珠). The Effect of Gas Flow Rate on Radio-Frequency Hollow Cathode Discharge Characteristics[J]. Plasma Science and Technology, 2014, 16(7): 669-676. DOI: 10.1088/1009-0630/16/7/07
    [8]YU Jianyang(俞建阳), LIU Huaping(刘华坪), XU Dimeng(徐迪孟), CHEN Fu(陈浮). Investigation of the DBD Plasma Effect on Flat Plate Flow[J]. Plasma Science and Technology, 2014, 16(3): 197-202. DOI: 10.1088/1009-0630/16/3/05
    [9]SUN Quan (孙权), CHENG Bangqin (程邦勤), LI Yinghong (李应红), CUI Wei (崔巍), et al.. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation[J]. Plasma Science and Technology, 2013, 15(11): 1136-1143. DOI: 10.1088/1009-0630/15/11/11
    [10]SUN Quan (孙权), CHENG Bangqin (程邦勤), LI Yinghong (李应红), CUI Wei (崔巍), et al.. Experimental Investigation of Hypersonic Flow and Plasma Aerodynamic Actuation Interaction[J]. Plasma Science and Technology, 2013, 15(9): 908-914. DOI: 10.1088/1009-0630/15/9/15

Catalog

    Article views (478) PDF downloads (820) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return