Citation: | Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2 |
[1] |
Zhou Y and Bai H L 2011 Sci. China Phys. Mech. Astron. 54 1289
|
[2] |
Spinosa E and Zhong S 2017 Reduction of skin friction drag in a turbulent boundary layer using circular synthetic jets Proc. of the 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (Grapevine, TX: AIAA) (https://doi.org/10.2514/ 6.2017-0324)
|
[3] |
Henoch et al 2006 Turbulent drag reduction using superhydrophobic surfaces Proc. of the 3rd AIAA Flow Control Conf., Fluid Dynamics and Co-located Conf. (San Francisco, CA: AIAA) (https://doi.org/10.2514/ 6.2006-3192)
|
[4] |
Wassen E et al 2008 Turbulent drag reduction by oscillating riblets Proc. of the 4th Flow Control Conf., Fluid Dynamics and Co-located Conf. (Seattle, WA: AIAA) (https://doi. org/10.2514/6.2008-4204)
|
[5] |
Pinheiro M J 2006 Plasma Process. Polym. 3 135
|
[6] |
Dong B et al 2008 J. Phys. D: Appl. Phys. 41 155201
|
[7] |
Wilkinson S 2003 Oscillating plasma for turbulent boundary layer drag reduction Proc. of the 41st Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (Reno, NV: AIAA) (https://doi.org/10.2514/6.2003-1023)
|
[8] |
Appartaim R, Mezonlin E D and Johnson J A III 2002 AIAA J. 40 1979
|
[9] |
Coumar S and Lago V 2017 Plasma actuators to reduce space mission costs Proc. of AIAA SPACE and Astronautics Forum and Exposition, AIAA SPACE Forum (Orlando, FL: AIAA) (https://doi.org/10.2514/6.2017-5177)
|
[10] |
Jukes T et al 2004 Turbulent boundary-layer control for drag reduction using surface plasma Proc. of the 2nd AIAA Flow Control Conf., Fluid Dynamics and Co-located Conf. (Portland, OR: AIAA) (https://doi.org/10.2514/ 6.2004-2216)
|
[11] |
Jukes T et al 2006 Turbulent drag reduction by surface plasma through spanwise flow oscillation Proc. of the 3rd AIAA Flow Control Conf., Fluid Dynamics and Co-located Conf. (San Francisco, CA: AIAA) (https://doi.org/10.2514/ 6.2006-3693)
|
[12] |
Wang Y P et al 2015 Chin. J. Theor. Appl. Mech. 47 571 (in Chinese)
|
[13] |
Wei T, Schmidt R and McMurtry P 2005 Exp. Fluids 38 695
|
[14] |
Song B W et al 2009 J. Mar. Sci. Appl. 8 333
|
[15] |
Hanson R et al 2011 Aerodynamic optimization of the flat plate leading edge for experimental studies of laminar and transitional boundary layers Proc. of the 49th AIAA Aerospace Sciences Meeting (Orlando, FL: AIAA) (https:// doi.org/10.2514/6.2011-1173)
|
[16] |
White F M 1991 Viscous Fluid Flow 2nd edn (New York: McGraw-Hill)
|
[17] |
Park S H, Lee I and Sung H J 2001 Exp. Fluids 31 384
|
[1] | Ziqi FANG, Haohua ZONG, Yun WU, Hua LIANG, Zhi SU. Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators[J]. Plasma Science and Technology, 2024, 26(2): 025503. DOI: 10.1088/2058-6272/ad0c99 |
[2] | Yueqiang LI, Bin WU, Chao GAO, Haibo ZHENG, Yushuai WANG, Rihua YAN. Turbulent boundary layer control with DBD plasma actuators[J]. Plasma Science and Technology, 2023, 25(4): 045508. DOI: 10.1088/2058-6272/aca503 |
[3] | Borui ZHENG, Yuanzhong JIN, Minghao YU, Yueqiang LI, Bin WU, Quanlong CHEN. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation[J]. Plasma Science and Technology, 2022, 24(11): 114003. DOI: 10.1088/2058-6272/ac72e2 |
[4] | Hesen YANG, Hua LIANG, Shanguang GUO, Yanhao LUO, Mengxiao TANG, Chuanbiao ZHANG, Yun WU, Yinghong LI. Experimental study on surface arc plasma actuation-based hypersonic boundary layer transition flow control[J]. Plasma Science and Technology, 2022, 24(9): 095503. DOI: 10.1088/2058-6272/ac6d42 |
[5] | Yueqiang LI (李跃强), Chao GAO (高超), Bin WU (武斌), Yushuai WANG (王玉帅), Haibo ZHENG (郑海波), Ming XUE (薛明), Yuling WANG (王玉玲). Turbulent boundary layer control with a spanwise array of DBD plasma actuators[J]. Plasma Science and Technology, 2021, 23(2): 25501-025501. DOI: 10.1088/2058-6272/abce0d |
[6] | Lu MA (马璐), Xiaodong WANG (王晓东), Jian ZHU (祝健), Shun KANG (康顺). Effect of DBD plasma excitation characteristics on turbulent separation over a hump model[J]. Plasma Science and Technology, 2018, 20(10): 105503. DOI: 10.1088/2058-6272/aacdf0 |
[7] | Haibao ZHANG (张海宝), Lijun SANG (桑利军), Zhengduo WANG (王正铎), Zhongwei LIU (刘忠伟), Lizhen YANG (杨丽珍), Qiang CHEN (陈强). Recent progress on non-thermal plasma technology for high barrier layer fabrication[J]. Plasma Science and Technology, 2018, 20(6): 63001-063001. DOI: 10.1088/2058-6272/aaacc8 |
[8] | ZHANG Wenbo (张文波), WANG Shenggao (王升高), XU Chuanbo (许传波), XU Kaiwei (徐开伟), WANG Mingyang (王明洋), WANG Jianhua (汪建华), HUANG Zhiliang (黄志良), WANG Chuanxin (王传新). Reduction of Ilmenite Through Microwave Plasma[J]. Plasma Science and Technology, 2013, 15(5): 465-468. DOI: 10.1088/1009-0630/15/5/14 |
[9] | LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17 |
[10] | SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02 |
1. | Zheng, B., Qi, S., Yu, M. et al. Turbulent drag reduction by sector-shaped counter-flow dielectric barrier discharge plasma actuator. Chinese Physics B, 2025, 34(2): 025205. DOI:10.1088/1674-1056/ada1c6 | |
2. | Su, Z., Zong, H., Liang, H. et al. Investigation of pulsed direct-current plasma jets in a turbulent boundary layer. Physics of Fluids, 2024, 36(3): 035128. DOI:10.1063/5.0190336 | |
3. | Zheng, H., Gao, C., Wu, B. et al. Drag reduction control of turbulent boundary layer based on plasma actuation | [基于等离子体激励的湍流边界层减阻控制]. Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38(5): 1157-1165. DOI:10.13224/j.cnki.jasp.20210546 | |
4. | SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019 | |
5. | Yan, R., Wu, B., Gao, C. et al. Enhanced heat transfer in Poiseuille-Rayleigh-Bénard flows based on dielectric-barrier-discharge plasma actuation. Physics of Plasmas, 2023, 30(3): 033501. DOI:10.1063/5.0131414 | |
6. | Su, Z., Zong, H., Liang, H. et al. Optimization in frequency characteristics of an oscillating dielectric barrier discharge plasma actuator. Sensors and Actuators A: Physical, 2023. DOI:10.1016/j.sna.2023.114195 | |
7. | Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f | |
8. | Zhang, X., Wang, X. RESEARCH PROGRESS AND OUTLOOK OF FLOW FIELD CREATED BY DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATORS DRIVEN BY A SINUSOIDAL ALTERNATING CURRENT HIGH-VOLTAGE POWER | [正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 285-298. DOI:10.6052/0459-1879-22-377 | |
9. | Zhao, J., Zhang, H., Meng, X. et al. Aerodynamic effects of a tube-type AC-SDBD plasma actuator. 2023. DOI:10.2514/6.2023-3747 | |
10. | Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083 | |
11. | Chen, J., Zong, H., Song, H. et al. AI-based real-time noise reduction of flow field pressure signals under plasma electromagnetic interference | [等离子体电磁干扰下圆柱绕流壁面压力信号 AI 实时降噪]. Shiyan Liuti Lixue/Journal of Experiments in Fluid Mechanics, 2023, 37(4): 59-65. DOI:10.11729/syltlx20230030 | |
12. | Zong, H., Wu, Y., Liang, H. et al. Experimental Investigation and Intelligent Optimization of Airfoil Zero-Lift Drag Reduction with Plasma Actuators. AIAA Journal, 2023, 61(1): 223-240. DOI:10.2514/1.J062099 | |
13. | Hui, W., Meng, X., Li, H. et al. Flow induced by a pair of plasma actuators on a circular cylinder in still air under duty-cycle actuation. Physics of Fluids, 2022, 34(12): 123613. DOI:10.1063/5.0124744 | |
14. | ZHENG, B., JIN, Y., YU, M. et al. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation. Plasma Science and Technology, 2022, 24(11): 114003. DOI:10.1088/2058-6272/ac72e2 | |
15. | Zong, H., Su, Z., Liang, H. et al. Experimental investigation and reduced-order modeling of plasma jets in a turbulent boundary layer for skin-friction drag reduction. Physics of Fluids, 2022, 34(8): 0104609. DOI:10.1063/5.0104609 | |
16. | Li, Y., Wu, Y., Liang, H. et al. Exploration and outlook of plasma-actuated gas dynamics | [等离子体激励气动力学探索与展望]. Advances in Mechanics, 2022, 52(1): 1-32. DOI:10.6052/1000-0992-21-044 | |
17. | Zhu, Z., Fradera-Soler, P., Jo, W. et al. Numerical simulation of the flow around a square cylinder under plasma actuator control. Physics of Fluids, 2021, 33(12): 123611. DOI:10.1063/5.0072081 | |
18. | Zhao, L., Xiao, Z., Liu, F. Simulation of flow induced by single-dielectric-barrier-discharge plasma actuator using a high-order flux-reconstruction scheme. Physics of Fluids, 2021, 33(4): 047108. DOI:10.1063/5.0046900 | |
19. | Li, Y., Gao, C., Wu, B. et al. Turbulent boundary layer control with a spanwise array of DBD plasma actuators. Plasma Science and Technology, 2021, 23(2): 025501. DOI:10.1088/2058-6272/abce0d |