Advanced Search+
Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2
Citation: Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2

Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula

Funds: The authors would like to acknowledge the financial support received from the project ‘Drag Reduction via Turbulent Boundary Layer Flow Control (DRAGY)’. The DRAGY project (April 2016–March 2019) is a China–EU Aeronautical Cooperation project, which is co-funded by the Ministry of Industry and Information Technology (MIIT), China, and the Directorate-General for Research and Innovation (DG RTD), European Commission.
More Information
  • Received Date: September 26, 2018
  • Abstract It is a very difficult task to develop a method of reducing turbulent boundary layer drag. However, in recent years, plasma flow control technology has demonstrated huge potential in friction drag reduction. To further investigate this issue, a smooth plate model was designed as a testing object arranged with a bidirectional dielectric-barrier-discharge (DBD) plasma actuator. In addition, measurement of skin friction drag was achieved by applying hot wire anemometry to obtain the velocity distribution of the turbulent boundary layer. A method of quantifying the friction drag effect was adopted based on the Spalding formula fitted with the experiment data. When plasma actuation was conducted, a velocity defect occurred at the two measuring positions, compared with the no plasma control condition; this means that the DBD plasma actuation could reduce the drag successfully in the downstream of the actuator. Moreover, drag reduction caused by backward actuation was slightly more efficient than that caused by forward actuation. With an increasing distance from plasma actuation, the drag-reduction effect could become weaker. Experimental results also show that the improvement of drag-reduction efficiency using a DBD plasma actuator can achieve about 8.78% in the local region of the experimental flat model.
  • [1]
    Zhou Y and Bai H L 2011 Sci. China Phys. Mech. Astron. 54 1289
    [2]
    Spinosa E and Zhong S 2017 Reduction of skin friction drag in a turbulent boundary layer using circular synthetic jets Proc. of the 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (Grapevine, TX: AIAA) (https://doi.org/10.2514/ 6.2017-0324)
    [3]
    Henoch et al 2006 Turbulent drag reduction using superhydrophobic surfaces Proc. of the 3rd AIAA Flow Control Conf., Fluid Dynamics and Co-located Conf. (San Francisco, CA: AIAA) (https://doi.org/10.2514/ 6.2006-3192)
    [4]
    Wassen E et al 2008 Turbulent drag reduction by oscillating riblets Proc. of the 4th Flow Control Conf., Fluid Dynamics and Co-located Conf. (Seattle, WA: AIAA) (https://doi. org/10.2514/6.2008-4204)
    [5]
    Pinheiro M J 2006 Plasma Process. Polym. 3 135
    [6]
    Dong B et al 2008 J. Phys. D: Appl. Phys. 41 155201
    [7]
    Wilkinson S 2003 Oscillating plasma for turbulent boundary layer drag reduction Proc. of the 41st Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (Reno, NV: AIAA) (https://doi.org/10.2514/6.2003-1023)
    [8]
    Appartaim R, Mezonlin E D and Johnson J A III 2002 AIAA J. 40 1979
    [9]
    Coumar S and Lago V 2017 Plasma actuators to reduce space mission costs Proc. of AIAA SPACE and Astronautics Forum and Exposition, AIAA SPACE Forum (Orlando, FL: AIAA) (https://doi.org/10.2514/6.2017-5177)
    [10]
    Jukes T et al 2004 Turbulent boundary-layer control for drag reduction using surface plasma Proc. of the 2nd AIAA Flow Control Conf., Fluid Dynamics and Co-located Conf. (Portland, OR: AIAA) (https://doi.org/10.2514/ 6.2004-2216)
    [11]
    Jukes T et al 2006 Turbulent drag reduction by surface plasma through spanwise flow oscillation Proc. of the 3rd AIAA Flow Control Conf., Fluid Dynamics and Co-located Conf. (San Francisco, CA: AIAA) (https://doi.org/10.2514/ 6.2006-3693)
    [12]
    Wang Y P et al 2015 Chin. J. Theor. Appl. Mech. 47 571 (in Chinese)
    [13]
    Wei T, Schmidt R and McMurtry P 2005 Exp. Fluids 38 695
    [14]
    Song B W et al 2009 J. Mar. Sci. Appl. 8 333
    [15]
    Hanson R et al 2011 Aerodynamic optimization of the flat plate leading edge for experimental studies of laminar and transitional boundary layers Proc. of the 49th AIAA Aerospace Sciences Meeting (Orlando, FL: AIAA) (https:// doi.org/10.2514/6.2011-1173)
    [16]
    White F M 1991 Viscous Fluid Flow 2nd edn (New York: McGraw-Hill)
    [17]
    Park S H, Lee I and Sung H J 2001 Exp. Fluids 31 384
  • Related Articles

    [1]Ziqi FANG, Haohua ZONG, Yun WU, Hua LIANG, Zhi SU. Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators[J]. Plasma Science and Technology, 2024, 26(2): 025503. DOI: 10.1088/2058-6272/ad0c99
    [2]Yueqiang LI, Bin WU, Chao GAO, Haibo ZHENG, Yushuai WANG, Rihua YAN. Turbulent boundary layer control with DBD plasma actuators[J]. Plasma Science and Technology, 2023, 25(4): 045508. DOI: 10.1088/2058-6272/aca503
    [3]Borui ZHENG, Yuanzhong JIN, Minghao YU, Yueqiang LI, Bin WU, Quanlong CHEN. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation[J]. Plasma Science and Technology, 2022, 24(11): 114003. DOI: 10.1088/2058-6272/ac72e2
    [4]Hesen YANG, Hua LIANG, Shanguang GUO, Yanhao LUO, Mengxiao TANG, Chuanbiao ZHANG, Yun WU, Yinghong LI. Experimental study on surface arc plasma actuation-based hypersonic boundary layer transition flow control[J]. Plasma Science and Technology, 2022, 24(9): 095503. DOI: 10.1088/2058-6272/ac6d42
    [5]Yueqiang LI (李跃强), Chao GAO (高超), Bin WU (武斌), Yushuai WANG (王玉帅), Haibo ZHENG (郑海波), Ming XUE (薛明), Yuling WANG (王玉玲). Turbulent boundary layer control with a spanwise array of DBD plasma actuators[J]. Plasma Science and Technology, 2021, 23(2): 25501-025501. DOI: 10.1088/2058-6272/abce0d
    [6]Lu MA (马璐), Xiaodong WANG (王晓东), Jian ZHU (祝健), Shun KANG (康顺). Effect of DBD plasma excitation characteristics on turbulent separation over a hump model[J]. Plasma Science and Technology, 2018, 20(10): 105503. DOI: 10.1088/2058-6272/aacdf0
    [7]Haibao ZHANG (张海宝), Lijun SANG (桑利军), Zhengduo WANG (王正铎), Zhongwei LIU (刘忠伟), Lizhen YANG (杨丽珍), Qiang CHEN (陈强). Recent progress on non-thermal plasma technology for high barrier layer fabrication[J]. Plasma Science and Technology, 2018, 20(6): 63001-063001. DOI: 10.1088/2058-6272/aaacc8
    [8]ZHANG Wenbo (张文波), WANG Shenggao (王升高), XU Chuanbo (许传波), XU Kaiwei (徐开伟), WANG Mingyang (王明洋), WANG Jianhua (汪建华), HUANG Zhiliang (黄志良), WANG Chuanxin (王传新). Reduction of Ilmenite Through Microwave Plasma[J]. Plasma Science and Technology, 2013, 15(5): 465-468. DOI: 10.1088/1009-0630/15/5/14
    [9]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [10]SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02
  • Cited by

    Periodical cited type(19)

    1. Zheng, B., Qi, S., Yu, M. et al. Turbulent drag reduction by sector-shaped counter-flow dielectric barrier discharge plasma actuator. Chinese Physics B, 2025, 34(2): 025205. DOI:10.1088/1674-1056/ada1c6
    2. Su, Z., Zong, H., Liang, H. et al. Investigation of pulsed direct-current plasma jets in a turbulent boundary layer. Physics of Fluids, 2024, 36(3): 035128. DOI:10.1063/5.0190336
    3. Zheng, H., Gao, C., Wu, B. et al. Drag reduction control of turbulent boundary layer based on plasma actuation | [基于等离子体激励的湍流边界层减阻控制]. Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38(5): 1157-1165. DOI:10.13224/j.cnki.jasp.20210546
    4. SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019
    5. Yan, R., Wu, B., Gao, C. et al. Enhanced heat transfer in Poiseuille-Rayleigh-Bénard flows based on dielectric-barrier-discharge plasma actuation. Physics of Plasmas, 2023, 30(3): 033501. DOI:10.1063/5.0131414
    6. Su, Z., Zong, H., Liang, H. et al. Optimization in frequency characteristics of an oscillating dielectric barrier discharge plasma actuator. Sensors and Actuators A: Physical, 2023. DOI:10.1016/j.sna.2023.114195
    7. Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f
    8. Zhang, X., Wang, X. RESEARCH PROGRESS AND OUTLOOK OF FLOW FIELD CREATED BY DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATORS DRIVEN BY A SINUSOIDAL ALTERNATING CURRENT HIGH-VOLTAGE POWER | [正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 285-298. DOI:10.6052/0459-1879-22-377
    9. Zhao, J., Zhang, H., Meng, X. et al. Aerodynamic effects of a tube-type AC-SDBD plasma actuator. 2023. DOI:10.2514/6.2023-3747
    10. Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083
    11. Chen, J., Zong, H., Song, H. et al. AI-based real-time noise reduction of flow field pressure signals under plasma electromagnetic interference | [等离子体电磁干扰下圆柱绕流壁面压力信号 AI 实时降噪]. Shiyan Liuti Lixue/Journal of Experiments in Fluid Mechanics, 2023, 37(4): 59-65. DOI:10.11729/syltlx20230030
    12. Zong, H., Wu, Y., Liang, H. et al. Experimental Investigation and Intelligent Optimization of Airfoil Zero-Lift Drag Reduction with Plasma Actuators. AIAA Journal, 2023, 61(1): 223-240. DOI:10.2514/1.J062099
    13. Hui, W., Meng, X., Li, H. et al. Flow induced by a pair of plasma actuators on a circular cylinder in still air under duty-cycle actuation. Physics of Fluids, 2022, 34(12): 123613. DOI:10.1063/5.0124744
    14. ZHENG, B., JIN, Y., YU, M. et al. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation. Plasma Science and Technology, 2022, 24(11): 114003. DOI:10.1088/2058-6272/ac72e2
    15. Zong, H., Su, Z., Liang, H. et al. Experimental investigation and reduced-order modeling of plasma jets in a turbulent boundary layer for skin-friction drag reduction. Physics of Fluids, 2022, 34(8): 0104609. DOI:10.1063/5.0104609
    16. Li, Y., Wu, Y., Liang, H. et al. Exploration and outlook of plasma-actuated gas dynamics | [等离子体激励气动力学探索与展望]. Advances in Mechanics, 2022, 52(1): 1-32. DOI:10.6052/1000-0992-21-044
    17. Zhu, Z., Fradera-Soler, P., Jo, W. et al. Numerical simulation of the flow around a square cylinder under plasma actuator control. Physics of Fluids, 2021, 33(12): 123611. DOI:10.1063/5.0072081
    18. Zhao, L., Xiao, Z., Liu, F. Simulation of flow induced by single-dielectric-barrier-discharge plasma actuator using a high-order flux-reconstruction scheme. Physics of Fluids, 2021, 33(4): 047108. DOI:10.1063/5.0046900
    19. Li, Y., Gao, C., Wu, B. et al. Turbulent boundary layer control with a spanwise array of DBD plasma actuators. Plasma Science and Technology, 2021, 23(2): 025501. DOI:10.1088/2058-6272/abce0d

    Other cited types(0)

Catalog

    Article views (179) PDF downloads (166) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return