Citation: | Borui ZHENG, Yuanzhong JIN, Minghao YU, Yueqiang LI, Bin WU, Quanlong CHEN. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation[J]. Plasma Science and Technology, 2022, 24(11): 114003. DOI: 10.1088/2058-6272/ac72e2 |
This work studies the turbulent drag reduction (TDR) effect of a flat plate model using a spanwise slot blowing pulsed plasma actuator (SBP-PA). Wind tunnel experiments are carried out under a Reynolds number of 1.445 × 104. Using a hot-wire anemometer and an electrical data acquisition system, the influences of millisecond pulsed plasma actuation with different burst frequencies and duty cycles on the microscale coherent structures near the wall of the turbulent boundary layer (TBL) are studied. The experimental results show that the SBP-PA can effectively reduce the frictional drag of the TBL. When the duty cycle exceeds 30%, the TDR rate is greater than 11%, and the optimal drag reduction rate of 13.69% is obtained at a duty cycle of 50%. Furthermore, optimizing the electrical parameters reveals that increasing the burst frequency significantly reduces the velocity distribution in the logarithmic region of the TBL. When the normalized burst frequency reaches f+ = 2πfpd/U∞ = 7.196, the optimal TDR effectiveness is 16.97%, indicating a resonance phenomenon between the pulsed plasma actuation and the microscale coherent structures near the wall. Therefore, reasonably selecting the electrical parameters of the plasma actuator is expected to significantly improve the TDR effect.
The present study is supported by National Natural Science Foundation of China (Nos. 61971345 and 12175177) and the Foundation for Key Laboratories of National Defense Science and Technology of China (No. 614220120030810).
[1] |
Ricco P, Skote M and Leschziner M A 2021 Prog. Aerosp. Sci. 123 100713 doi: 10.1016/j.paerosci.2021.100713
|
[2] |
Leschziner M A 2020 J. Mech. 36 649 doi: 10.1017/jmech.2020.31
|
[3] |
Li Y H and Wu Y 2020 Sci. Sin. Technol. 50 1252 doi: 10.1360/SST-2020-0111
|
[4] |
Meng X S, Song K and Long Y X 2018 Acta Aerodynam. Sin. 36 901
|
[5] |
Roth J R, Sherman D M and Wilkinson S 1998 Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma 36th AIAA Aerospace Sciences Meeting and Exhibit (Reno: AIAA)
|
[6] |
Choi H, Moin P and Kim J 1994 J. Fluid Mech. 262 75 doi: 10.1017/S0022112094000431
|
[7] |
Pouryoussefi S G and Mirzaei M 2015 Plasma Sci. Technol. 17 415 doi: 10.1088/1009-0630/17/5/09
|
[8] |
Dalvand E S, Ebrahimi M and Pouryoussefi S G 2018 Appl. Therm. Eng. 129 50 doi: 10.1016/j.applthermaleng.2017.10.004
|
[9] |
Choi K S and Clayton B R 2001 Int. J. Heat Fluid Flow 22 1 doi: 10.1016/S0142-727X(00)00070-9
|
[10] |
Jukes T N and Choi K S 2006 Session: FC-24: flow control for drag reduction Ⅱ 3rd AIAA Flow Control Conf. (San Francisco, CA: AIAA)
|
[11] |
Li Y Z and Zhou Y 2011 Skin friction drag reduction based on unsteady blowing through one array of streamwise slits Fluid Structure-Sound Interactions and Control ed Y Zhou et al (Berlin: Springer) p 157
|
[12] |
Duong A H, Corke T C and Thomas F O 2021 J. Fluid Mech. 915 A113 doi: 10.1017/jfm.2021.167
|
[13] |
Hamilton J M, John K and Waleffe F 1995 J. Fluid Mech. 287 317 doi: 10.1017/S0022112095000978
|
[14] |
Baron A and Quadrio M 1996 Appl. Sci. Res. 55 311 doi: 10.1007/BF00856638
|
[15] |
Park J and Choi H 1999 Phys. Fluids 11 3095 doi: 10.1063/1.870167
|
[16] |
Kim K and Sung H J 2006 J. Fluid Mech. 557 423 doi: 10.1017/S0022112006009906
|
[17] |
Abbassi M R et al 2017 Int. J. Heat Fluid Flow 67 30 doi: 10.1016/j.ijheatfluidflow.2017.05.003
|
[18] |
Cheng X Q et al 2021 J. Fluid Mech. 920 A50 doi: 10.1017/jfm.2021.439
|
[19] |
Tardu S F 2001 J. Fluid Mech. 439 217 doi: 10.1017/S0022112001004542
|
[20] |
Du Y Q, Symeonidis V and Karniadakis G E 2002 J. Fluid Mech. 457 1 doi: 10.1017/S0022112001007613
|
[21] |
Yao J, Chen X and Hussain F 2018 J. Fluid Mech. 852 678 doi: 10.1017/jfm.2018.553
|
[22] |
Ricco P and Quadrio M 2008 Int. J. Heat Fluid Flow 29 891 doi: 10.1016/j.ijheatfluidflow.2007.12.005
|
[23] |
Touber E and Leschziner M A 2012 J. Fluid Mech. 693 150 doi: 10.1017/jfm.2011.507
|
[24] |
Canton J et al 2016 Phys. Rev. Fluids 1 081501 doi: 10.1103/PhysRevFluids.1.081501
|
[25] |
Xie L K et al 2019 J. Propuls. Technol. 40 2216
|
[26] |
Hutchinx N and Choi K S 2002 Prog. Aerosp. Sci. 38 421 doi: 10.1016/S0376-0421(02)00027-1
|
[27] |
Lu L S et al 2020 Adv. Aeronaut. Sci. Eng. 11 618
|
[28] |
Wu B et al 2019 Plasma Sci. Technol. 21 045501 doi: 10.1088/2058-6272/aaf2e2
|
[29] |
Kline S J et al 1967 J. Fluid Mech. 30 741 doi: 10.1017/S0022112067001740
|
[30] |
Zheng B R, Xue M and Ge C 2020 Chin. Phys. B 29 064703 doi: 10.1088/1674-1056/ab8372
|
[31] |
Emori K, Kaneko Y and Nishida H 2022 Phys. Fluids 34 023601 doi: 10.1063/5.0077425
|
[32] |
Xue M et al 2020 AIAA J. 58 2428 doi: 10.2514/1.J057764
|
[33] |
Mishra B K and Panigrahi P K 2017 Phys. Fluids 29 024104 doi: 10.1063/1.4975156
|
[34] |
Ran W, Zare A and Jovanović M R 2021 J. Fluid Mech. 906 A7 doi: 10.1017/jfm.2020.722
|
[1] | Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035 |
[2] | Liying ZHU (朱立颖), Zhigang LIU (刘治钢), Xiaofeng ZHANG (张晓峰), Chao WANG (王超), Xiaofei LI (李小飞), Bingxin ZHAO (赵冰欣). Study on volt-ampere characteristics of solar array arcs in LEO spacecraft[J]. Plasma Science and Technology, 2019, 21(2): 25302-025302. DOI: 10.1088/2058-6272/aaf18a |
[3] | Safi ULLAH, Hailong LI (李海龙), Abdur RAUF, Lin MENG (蒙林), Bin WANG (王彬), Maoyan WANG (王茂琰). PMSE dependence on frequency observed simultaneously with VHF and UHF radars in the presence of precipitation[J]. Plasma Science and Technology, 2018, 20(11): 115302. DOI: 10.1088/2058-6272/aac8d4 |
[4] | Liying ZHU (朱立颖), Linchun FU (付林春), Ming QIAO (乔明), Bo CUI (崔波), Qi CHEN (陈琦), Junyi LIN (林君毅). The characteristics of primary and secondary arcs on a solar array in low earth orbit[J]. Plasma Science and Technology, 2017, 19(5): 55304-055304. DOI: 10.1088/2058-6272/aa607a |
[5] | WANG Yu (王玉), SU Dandan (苏丹丹), LI Yingjun (李英骏). Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect[J]. Plasma Science and Technology, 2016, 18(12): 1181-1185. DOI: 10.1088/1009-0630/18/12/07 |
[6] | DU Tengfei (杜腾飞), PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), HU Zhimeng (胡志猛), GE Lijian (葛理健), HU Liqun (胡立群), ZHONG Guoqiang (钟国强), PU Neng (普能), CHEN Jinxiang (陈金象), FAN Tieshuan (樊铁栓). Time Dependent DD Neutrons Measurement Using a Single Crystal Chemical Vapor Deposition Diamond Detector on EAST[J]. Plasma Science and Technology, 2016, 18(9): 950-953. DOI: 10.1088/1009-0630/18/9/12 |
[7] | GAO Fangfang (高芳芳), ZHANG Xiaokang (张小康), PU Yong (蒲勇), ZHU Qingjun (祝庆军), LIU Songlin (刘松林). Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(8): 865-869. DOI: 10.1088/1009-0630/18/8/13 |
[8] | QI Lei(齐磊), ZHANG Chunmei(张春梅), CHEN Qiang(陈强). Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells[J]. Plasma Science and Technology, 2014, 16(1): 45-49. DOI: 10.1088/1009-0630/16/1/10 |
[9] | HAO Xiping (郝希平), SONG Zhiqiang (宋志), HE Jian (贺健), LI Qiuze (李秋泽), et al.. Calculation of the Effect of Opacity on the Solar Spectral Lines of CIV[J]. Plasma Science and Technology, 2013, 15(8): 760-763. DOI: 10.1088/1009-0630/15/8/08 |
[10] | WANG Rong(王荣), FENG Zhao(冯钊), LIU Yunhong(刘运宏), LU Ming(鲁明). Effects of 50 keV and 100 keV Proton Irradiation on GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Plasma Science and Technology, 2012, 14(7): 647-649. DOI: 10.1088/1009-0630/14/7/18 |