Advanced Search+
Yueqiang LI (李跃强), Chao GAO (高超), Bin WU (武斌), Yushuai WANG (王玉帅), Haibo ZHENG (郑海波), Ming XUE (薛明), Yuling WANG (王玉玲). Turbulent boundary layer control with a spanwise array of DBD plasma actuators[J]. Plasma Science and Technology, 2021, 23(2): 25501-025501. DOI: 10.1088/2058-6272/abce0d
Citation: Yueqiang LI (李跃强), Chao GAO (高超), Bin WU (武斌), Yushuai WANG (王玉帅), Haibo ZHENG (郑海波), Ming XUE (薛明), Yuling WANG (王玉玲). Turbulent boundary layer control with a spanwise array of DBD plasma actuators[J]. Plasma Science and Technology, 2021, 23(2): 25501-025501. DOI: 10.1088/2058-6272/abce0d

Turbulent boundary layer control with a spanwise array of DBD plasma actuators

Funds: The authors would like to acknowledge the financial support from the European Commission through the Research and Innovation action DRAGY (Drag Reduction via Turbulent Boundary Layer Flow Control), under Grant No. 690623, and the Ministry of Industry and Information Technology (MIIT) of the Chinese government, and support received from National Natural Science Foundation of China (No. 11572256).
More Information
  • Received Date: July 29, 2020
  • Revised Date: November 23, 2020
  • Accepted Date: November 24, 2020
  • The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge (DBD) plasma actuators by hot-film sensor technology is investigated. Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor, the correction method that takes account of the change measured by another sensor is used and works well. In order to achieve the value of shear stress change, we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor. To test the stability of the hot-film sensor, seven repeated measurements of shear stress at Ma = 0.3 are conducted and show that confidence interval of hot-film sensor measurement is from −0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5% over all Mach numbers in this experiment. The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6% over the three Mach numbers, which is thought to be reliable through comparing it with the relative error 0.5%, and the value is hardly affected by burst frequency and excitation voltage.
  • [1]
    Pinheiro M J 2006 Plasma Process. Polym. 3 135
    [2]
    Dong B et al 2008 J. Phys. D: Appl. Phys. 41 155201
    [3]
    Xue M et al 2020 AIAA J. 58 2428
    [4]
    Pouryoussefi S G et al 2016 Appl. Therm. Eng. 100 1334
    [5]
    Meng X S et al 2019 Phys. Fluids 31 037103
    [6]
    Roth J R, Sherman D M and Wilkinson S P 1998 Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma Proc. 36th AIAA Aerospace Sciences Meeting and Exhibit (Reno, Nevada, USA) (Reston, VA: AIAA)
    [7]
    Roth J R, Sherman D M and Wilkinson S P 2000 AIAA J.38 1166
    [8]
    Jukes T N et al 2006 Turbulent boundary-layer control for drag reduction using surface plasma Proc. 2nd AIAA Flow Control Conf. (Portland, Oregon, USA) (Reston, VA: AIAA)
    [9]
    Corke T C and Thomas F O 2018 AIAA J. 56 3835
    [10]
    Wu B et al 2018 Plasma Sci. Technol. 21 045501
    [11]
    Kline S J et al 1967 J. Fluid Mech. 30 741
    [12]
    Clar J A and Markland E 1971 J. Hydraul. Div. 97 1653
    [13]
    Choi K S, DeBisschop J R and Clayton B R 1998 AIAA J. 36 1157
    [14]
    Smits A J, McKeon B J and Marusic I 2011 Ann. Rev. Fluid Mech. 43 353
    [15]
    Marusic I, Mathis R and Hutchins N 2010 Int. J. Heat Fluid Flow 31 418
    [16]
    Jiménez J and Pinelli A 1999 J. Fluid Mech. 389 335
    [17]
    Mathis R, Hutchins N and Marusic I 2009 J. Fluid Mech.628 311
    [18]
    Naughton J W and Sheplak M 2002 Prog. Aerosp. Sci. 38 515
    [19]
    Yan Y C et al 2019 Flow Meas. Instrum. 69 101591
    [20]
    Huang X P 2016 The calibration model of micro thermal sensor for wall shear stress measurement in the air MEng Thesis Northwestern Polytechnical University (in Chinese)
  • Related Articles

    [1]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [2]Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
    [3]Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602
    [4]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [5]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [6]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [7]WANG Lifeng (王立锋), YE Wenhua (叶文华), FAN Zhengfeng (范征锋), et al.. Nonlinear Evolution of Jet-Like Spikes from the Single-Mode Ablative Rayleigh-Taylor Instability with Preheating[J]. Plasma Science and Technology, 2013, 15(10): 961-968. DOI: 10.1088/1009-0630/15/10/01
    [8]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
    [9]Alexander I. Pushkarev, Yulia I. Isakova. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode[J]. Plasma Science and Technology, 2011, 13(6): 698-701.
    [10]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.
  • Cited by

    Periodical cited type(3)

    1. Zhang, Y., Guo, Z.B., Qin, C.C. et al. Impact of triangularity on edge peeling-ballooning modes in H-mode plasmas. Physics of Plasmas, 2024, 31(2): 022110. DOI:10.1063/5.0174192
    2. Wang, L.P., Guo, Z.B., Mao, Z.J. et al. Phase finite time singularity: On the dissolution of a surface MHD eigenmode to the Alfvén continuum. Physics of Plasmas, 2023, 30(3): 032105. DOI:10.1063/5.0132609
    3. Zhang, Y., Guo, Z.B., Diamond, P.H. et al. Dephasing and phase-locking: Dual role of radial electric field in edge MHD dynamics of toroidally confined plasmas. Physics of Plasmas, 2022, 29(11): 112101. DOI:10.1063/5.0105360

    Other cited types(0)

Catalog

    Article views (155) PDF downloads (264) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return