Advanced Search+
Ziqi FANG, Haohua ZONG, Yun WU, Hua LIANG, Zhi SU. Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators[J]. Plasma Science and Technology, 2024, 26(2): 025503. DOI: 10.1088/2058-6272/ad0c99
Citation: Ziqi FANG, Haohua ZONG, Yun WU, Hua LIANG, Zhi SU. Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators[J]. Plasma Science and Technology, 2024, 26(2): 025503. DOI: 10.1088/2058-6272/ad0c99

Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators

More Information
  • To improve the cruise flight performance of aircraft, two new configurations of plasma actuators (grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry (PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array (peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the super-dense array plasma actuator created a wavy wall-parallel jet (magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level, the super-dense array plasma actuator array significantly outperformed the grid-type configuration, reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s. The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio (r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.

  • [1]
    Ricco P, Skote M and Leschziner M A 2021 Prog. Aerosp. Sci. 123 100713 doi: 10.1016/j.paerosci.2021.100713
    [2]
    Bushnell D M 2003 Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 217 1
    [3]
    Gattere F, Chiarini A and Quadrio M 2022 Fluids 7 240 doi: 10.3390/fluids7070240
    [4]
    Walsh M and Lindemann A Optimization and application of riblets for turbulent drag reduction In: 22nd Aerospace Sciences Meeting Reno: AIAA 1984: 347
    [5]
    Yakeno A 2021 Phys. Fluids 33 065122 doi: 10.1063/5.0050547
    [6]
    Kornilov V I 2015 Prog. Aerosp. Sci. 76 1 doi: 10.1016/j.paerosci.2015.05.001
    [7]
    Zong H H et al 2022 Phys. Fluids 34 085133 doi: 10.1063/5.0104609
    [8]
    Choi K S, Jukes T and Whalley R 2011 Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 369 1443
    [9]
    Zheng H B et al 2023 J. Aerosp. Power 38 1157 (in Chinese)
    [10]
    Thomas F O et al 2019 J. Phys. D: Appl. Phys. 52 434001
    [11]
    Duong A H, Corke T C and Thomas F O Characteristics of drag reduced turbulent boundary layers through pulsed-DC actuation In: AIAA Scitech 2020 Forum Orlando: AIAA 2000: 98
    [12]
    Duong A H, Corke T C and Thomas F O 2021 J. Fluid Mech. 915 A113 doi: 10.1017/jfm.2021.167
    [13]
    Jukes T N, Segawa T and Furutani H 2013 AIAA J. 51 452 doi: 10.2514/1.J051852
    [14]
    Eto K et al 2019 AIAA J. 57 2774 doi: 10.2514/1.J057998
    [15]
    Corke T C and Thomas F O 2018 AIAA J. 56 3835 doi: 10.2514/1.J056949
    [16]
    Su Z et al 2023 Chin. J. Aeronaut. 36 104 doi: 10.1016/j.cja.2022.11.019
    [17]
    Roy S et al 2016 AIP Adv. 6 025322 doi: 10.1063/1.4942979
    [18]
    Shimizu K et al 2017 IEEE Trans. Ind. Appl. 53 1452 doi: 10.1109/TIA.2016.2637305
    [19]
    Bian D L et al 2017 Chin. Phys. B 26 084703 doi: 10.1088/1674-1056/26/8/084703
    [20]
    Rodrigues F F, Pascoa J C and Trancossi M Experimental analysis of alternative dielectric materials for DBD plasma actuators In: ASME 2018 International Mechanical Engineering Congress and Exposition Pittsburgh: ASME 2018: V001T03A005
    [21]
    Zhang X, Zhao Y G and Yang C 2023 Chin. J. Aeronaut. 36 1
    [22]
    Anderson J D 2011 Fundamentals of Aerodynamics 5th ed (Singapore: McGraw-Hill
    [23]
    Singh K P and Roy S 2007 Appl. Phys. Lett. 91 081504 doi: 10.1063/1.2773932
    [24]
    Forte M et al 2007 Exp. Fluids 43 917 doi: 10.1007/s00348-007-0362-7
    [25]
    Debien A, Benard N and Moreau E 2012 J. Phys. D: Appl. Phys. 45 215201
    [26]
    Benard N and Moreau E 2012 Appl. Phys. Lett. 100 193503 doi: 10.1063/1.4712125
    [27]
    Saito T et al Effect of interference between two facing plasma actuators on discharge and flow field In: AIAA SCITECH 2023 Forum National Harbor: AIAA 2023: 863
    [28]
    Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press
    [29]
    Yao J et al 2017 Phys. Rev. Fluids 2 062601 doi: 10.1103/PhysRevFluids.2.062601
    [30]
    Zong H H 2018 AIAA J. 56 2075 doi: 10.2514/1.J056690
    [31]
    Cheng X Q et al 2021 J. Fluid Mech. 918 A24 doi: 10.1017/jfm.2021.311
    [32]
    Hamilton J M, Kim J and Waleffe F 1995 J. Fluid Mech. 287 317 doi: 10.1017/S0022112095000978
    [33]
    Schoppa W and Hussain F 1998 Phys. Fluids 10 1049 doi: 10.1063/1.869789
    [34]
    Schoppa W and Hussain F 2002 J. Fluid Mech. 453 57 doi: 10.1017/S002211200100667X
    [35]
    Choi H, Moin P and Kim J 1994 J. Fluid Mech. 262 75 doi: 10.1017/S0022112094000431
    [36]
    Xie L et al 2021 Flow Turbulence Combust 107 51 doi: 10.1007/s10494-020-00221-2
    [37]
    Soleimani S and Eckels S 2021 Int. J. Thermofluids 9 100053 doi: 10.1016/j.ijft.2020.100053
  • Cited by

    Periodical cited type(11)

    1. Cui, Y., Kong, D. Design of High Intensity Electromagnetic Radiation Measurement System in Explosive Field | [爆 炸 场 强 电 磁 辐 射 测 试 系 统 设 计]. Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2024, 51(8): 219-230. DOI:10.16339/j.cnki.hdxbzkb.2024192
    2. Cui, Y., Jiang, J. Analysis method of explosive electromagnetic radiation energy. Propellants, Explosives, Pyrotechnics, 2024, 49(4): e202300276. DOI:10.1002/prep.202300276
    3. Yu, D., Huang, X., Xu, P. Research on explosive electromagnetic field interference analysis based on field-circuit cooperated modeling and simulation. Journal of Computational Electronics, 2024, 23(2): 330-340. DOI:10.1007/s10825-024-02137-w
    4. Cui, Y., Jiang, J. Analysis on Anti-Interference Performance of Sensor in Explosive Electromagnetic Environment. IEEE Sensors Journal, 2024, 24(3): 2895-2904. DOI:10.1109/JSEN.2023.3341957
    5. Cui, Y., Jiang, J., Kong, D. Characteristics and variation laws of electromagnetic radiation generated during explosion. Propellants, Explosives, Pyrotechnics, 2024, 49(1): e202300166. DOI:10.1002/prep.202300166
    6. Li, F., Li, J., Zheng, Y. et al. Multispectral Diagnosis of Plasma Electron Temperature Based on Electron Collision Cross Section Model. IEEE Transactions on Plasma Science, 2023, 51(12): 3579-3584. DOI:10.1109/TPS.2023.3341445
    7. Shan, F., Jiao, J.-J., Wang, H.-C. et al. Influence of overdriven detonation on the energy release of aluminized explosives in underwater explosion. Physics of Fluids, 2023, 35(9): 093305. DOI:10.1063/5.0166437
    8. Cui, Y., Kong, D., Jiang, J. Measurement method for electromagnetic radiation generated during a high-capacity warhead explosion. Measurement Science and Technology, 2023, 34(9): 095015. DOI:10.1088/1361-6501/acdab1
    9. Cui, Y., Kong, D., Jiang, J. et al. Research on Electromagnetic Radiation Characteristics of Energetic Materials. Magnetochemistry, 2022, 8(5): 57. DOI:10.3390/magnetochemistry8050057
    10. Cui, Y., Kong, D., Jiang, J. et al. Research on Electromagnetic Radiation Mechanism during Detonation of Energetic Material. Sensors, 2022, 22(7): 2765. DOI:10.3390/s22072765
    11. Cui, Y., Jiang, J., Kong, D. et al. Study on electromagnetic radiation interference caused by rocket fuel. Sensors, 2021, 21(23): 8123. DOI:10.3390/s21238123

    Other cited types(0)

Catalog

    Article views (28) PDF downloads (13) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return