Advanced Search+
Yi ZHANG (张毅), Zhibin GUO (郭志彬). Nonlinear phase dynamics of ideal kink mode in the presence of shear flow[J]. Plasma Science and Technology, 2021, 23(4): 45101-045101. DOI: 10.1088/2058-6272/abe274
Citation: Yi ZHANG (张毅), Zhibin GUO (郭志彬). Nonlinear phase dynamics of ideal kink mode in the presence of shear flow[J]. Plasma Science and Technology, 2021, 23(4): 45101-045101. DOI: 10.1088/2058-6272/abe274

Nonlinear phase dynamics of ideal kink mode in the presence of shear flow

Funds: This project was supported by the National MCF Energy R&D Program of China (No. 2018YFE0311400)
More Information
  • Received Date: December 18, 2020
  • Revised Date: January 28, 2021
  • Accepted Date: February 01, 2021
  • We investigate nonlinear phase dynamics of an ideal kink mode, induced by E × B flow. Here the phase is the cross phase (θc) between perturbed stream function of velocity (ф˜) and magnetic field (φ˜ ), i.e. θc = θфθψ. A dimensionless parameter, analogous to the Richardson number, Ri = 16γkink2E2kink: the normalized growth rate of the pure kink mode; ωˆE: normalized E × B shearing rate) is defined to measure the competition between phase pinning by the current density and phase detuning by the flow shear. When Ri> 1, θc is locked to a fixed value, corresponding to the conventional eigenmode solution. When Ri ≤1, θc enters a phase slipping or oscillating state, corresponding to a nonmodal solution. The nonlinear phase dynamics method provides a more intuitive explanation of the complex ynamical behavior of the kink mode in the presence of E × B shear flow.
  • [1]
    Kadomtsev B B 1992 Tokamak Plasma: A Complex Physical System (Bristol: IOP Publishing)
    [2]
    White R B 2001 The Theory of Toroidally Confined Plasmas 2nd edn (London: Imperial College Press)
    [3]
    Wesson J A 1978 Nucl. Fusion 18 87
    [4]
    Boyd T J M and Freidberg J P 2003 Ideal Magnetohydrodynamics (Cambridge: Cambridge University Press)
    [5]
    Snyder P B et al 2007 Nucl. Fusion 47 961
    [6]
    Furukawa M and Tokuda S 2005 Phys. Rev. Lett. 94 175001
    [7]
    Waelbroeck F L 1996 Phys. Plasmas 3 1047
    [8]
    Schnack D D 2009 Lectures in Magnetohydrodynamics: With An Appendix on Extended MHD (Berlin: Springer)
    [9]
    Schmid P J 2007 Annu. Rev. Fluid Mech. 39 129
    [10]
    Guo Z B and Diamond P H 2015 Phys. Rev. Lett. 114 145002
    [11]
    Wilks T M et al 2018 Nucl. Fusion 58 112002
    [12]
    Xu T C et al 2020 Nucl. Fusion 60 0160129
    [13]
    Zhang Y et al 2019 Phys. Plasmas 26 052508
    [14]
    Kang H and Diamond P H 2019 Phys. Plasmas 26 102304
    [15]
    Miles J W 1961 J. Fluid Mech. 10 496
    [16]
    Adler R 1946 Proc. IRE 34 351
    [17]
    Acebrón J A et al 2005 Rev. Mod. Phys. 77 137
    [18]
    Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
    [19]
    Zhang Y, Guo Z B and Diamond P H 2020 Phys. Rev. Lett. 125 255003
  • Related Articles

    [1]Zhihui ZOU, Ping ZHU, Charlson C KIM, Wei DENG, Xianqu WANG, Yawei HOU. Frequency multiplication with toroidal mode number of kink/fishbone modes on a static HL-2A-like tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124005. DOI: 10.1088/2058-6272/aca00a
    [2]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [3]Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
    [4]Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602
    [5]Yanqing HUANG (黄艳清), Tianyang XIA (夏天阳), Bin GUI (桂彬). Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes[J]. Plasma Science and Technology, 2018, 20(4): 45101-045101. DOI: 10.1088/2058-6272/aaa4f1
    [6]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [7]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [8]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [9]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
    [10]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.
  • Cited by

    Periodical cited type(3)

    1. Wang, S.Q., Zou, X.L., Duan, X.R. et al. Interaction between MTM and EGAM for energy and particle confinement improvements on HL-3 tokamak. Nuclear Fusion, 2025, 65(2): 026013. DOI:10.1088/1741-4326/ad9ba4
    2. Yang, Z., Zhong, W., Xia, F. et al. Implementing deep learning-based disruption prediction in a drifting data environment of new tokamak: HL-3. Nuclear Fusion, 2025, 65(2): 026030. DOI:10.1088/1741-4326/ada396
    3. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    1. Wang, S.Q., Zou, X.L., Duan, X.R. et al. Interaction between MTM and EGAM for energy and particle confinement improvements on HL-3 tokamak. Nuclear Fusion, 2025, 65(2): 026013. DOI:10.1088/1741-4326/ad9ba4
    2. Yang, Z., Zhong, W., Xia, F. et al. Implementing deep learning-based disruption prediction in a drifting data environment of new tokamak: HL-3. Nuclear Fusion, 2025, 65(2): 026030. DOI:10.1088/1741-4326/ada396
    3. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86

    Other cited types(0)

Catalog

    Article views (292) PDF downloads (394) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return