Citation: | Qian LI (李倩), Minju YING (英敏菊), Zhongwei LIU (刘忠伟), Lizhen YANG (杨丽珍), Qiang CHEN (陈强). The low temperature growth of stable p-type ZnO films in HiPIMS[J]. Plasma Science and Technology, 2021, 23(9): 95503-095503. DOI: 10.1088/2058-6272/ac0687 |
[1] |
Zhao X Y et al 2018 Solar RRL 2 1700194
|
[2] |
Ou K et al 2019 J. Mater. Sci. 54 4049
|
[3] |
Basak D et al 2003 J. Crys. Growth 256 73
|
[4] |
Jeong E et al 2019 RSC Adv. 9 9160
|
[5] |
Kumar M, Kim S K and Choi S Y 2009 Appl. Surf. Sci.256 1329
|
[6] |
Hála M et al 2015 Prog. Photovolt. Res. Appl. 23 1630
|
[7] |
Rezek J et al 2019 Thin Solid Films 679 35
|
[8] |
Park D H et al 2010 Korean J. Mater. Res. 20 629
|
[9] |
Horwat D, Mickan M and Chamorro W 2016 Phys. Stat. Sol. C 13 951
|
[10] |
Sun Y J and Wang W X 2014 Key Eng. Mater. 609–610 113
|
[11] |
Mahmood K and Samaa B M 2018 J. Exp. Theor. Phys.126 766
|
[12] |
de León J A G et al 2019 SN Appl. Sci. 1 475
|
[13] |
Chang S P et al 2009 Thin Solid Films 517 5054
|
[14] |
Krishna Kumar M et al 2016 Mater. Today Proc. 3 1525
|
[15] |
Li Q et al 2020 AIP Adv. 10 015125
|
[16] |
Yuan Y et al 2018 Plasma Sci. Technol. 20 065501
|
[17] |
Greczynski G et al 2019 J. Vac. Sci. Technol. A 37 060801
|
[18] |
Gudmundsson J T et al 2012 J. Vac. Sci. Technol. A 30 030801
|
[19] |
Mickan M et al 2016 Solar Energy Mater. Solar Cells 157 742
|
[20] |
Barnes T M, Olson K and Wolden C A 2005 Appl. Phys. Lett.86 112112
|
[21] |
Lu H P et al 2016 Mater. Lett. 165 123
|
[22] |
Tu M L, Su C Y and Ma C Y 2006 J. Appl. Phys. 100 053705
|
[23] |
Nakano Y et al 2005 Appl. Phys. Lett. 87 232104
|
[24] |
Ismail A, Abdullah M J and Qaeed M A 2015 J. Lumin. 164 69
|
[25] |
Kanai Y 1991 Jpn. J. Appl. Phys. 30 703
|
[26] |
Hu Y M et al 2017 Appl. Phys. Lett. 110 141903
|
[27] |
Zhuge F et al 2005 Thin Solid Films 476 272
|
[28] |
Wang Z D et al 2020 AIP Adv. 10 035122
|
[29] |
moon Y K, Kim S H and Park J W 2006 J. Mater. Sci. Mater.Electron. 17 973
|
[30] |
Chou S M, Hon M H and Leu I C 2008 Appl. Surf. Sci.255 2958
|
[31] |
Pathak T K, Kumar V and Purohit L P 2016 Optik 127 603
|
[32] |
Ismail A et al 2021 J. King Saud Univ. Sci. 33 101229
|
[33] |
Yuan G D et al 2005 Appl. Phys. Lett. 86 202106
|
[34] |
Yamaya K et al 1998 Appl. Phys. Lett. 72 235
|
[35] |
Zhu B L et al 2007 Phys. B Condens. Matter 396 95
|
[36] |
Yu C F et al 2008 J. Phys. D Appl. Phys. 42 035001
|
[37] |
Ye Z Z et al 2018 Nano Energy 52 527
|
[38] |
Graham D M et al 2005 J. Appl. Phys. 97 103508
|
[39] |
Wang P W et al 1997 Thin Solid Films 295 142
|
[40] |
Yuan G D et al 2009 J. Cryst. Growth 311 2341
|
[41] |
Zeng Y J et al 2005 Appl. Surf. Sci. 249 203
|
[42] |
Yan Y F, Zhang S B and Pantelides S T 2001 Phys. Rev. Lett.86 5723
|
[43] |
Tan S T et al 2007 Appl. Phys. Lett. 91 1172
|
[44] |
Nakano Y et al 2005 Appl. Phys. Lett. 87 1
|
[45] |
Harrison S E 1954 Phys. Rev. 93 52
|
[46] |
Artús L et al 2007 Appl. Phys. Lett. 90 181911
|
[1] | Maria YOUNUS, N U REHMAN, M SHAFIQ, M NAEEM, M ZAKA-UL-ISLAM, M ZAKAULLAH. Evolution of plasma parameters in an Ar–N2/ He inductive plasma source with magnetic pole enhancement[J]. Plasma Science and Technology, 2017, 19(2): 25402-025402. DOI: 10.1088/2058-6272/19/2/025402 |
[2] | NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09 |
[3] | A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06 |
[4] | ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08 |
[5] | Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09 |
[6] | LIU Xuan(刘璇), GE Jie(葛婕), YANG Yi(杨轶), SONG Yixu(宋亦旭), REN Tianling(任天令). Feature Scale Simulation of PECVD of SiO 2 in SiH 4 /N 2 O Mixture[J]. Plasma Science and Technology, 2014, 16(4): 385-389. DOI: 10.1088/1009-0630/16/4/15 |
[7] | YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07 |
[8] | XIN Yu(信裕), DING Hongbin(丁洪斌). Ab initio Calculations of Electron-Impact Excitation Cross Sections for N 2[J]. Plasma Science and Technology, 2014, 16(2): 104-109. DOI: 10.1088/1009-0630/16/2/04 |
[9] | DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11 |
[10] | YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07 |
1. | Chen, S., Li, Z., Gao, Y. et al. Preparation of few-layer graphene by annealing Ni film with low carbon content deposited by direct current magnetron sputtering. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113421 | |
2. | Li, Q., Qi, Y., Cheng, W. et al. Combined effects of electron doping and surface polarity on the ferromagnetism in Gd implanted polar ZnO wafers. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2022.167319 | |
3. | Li, Q., Ying, M. Ion implantation induced d0 ferromagnetism in oxide semiconductors. Defect-Induced Magnetism in Oxide Semiconductors, 2023. DOI:10.1016/B978-0-323-90907-5.00019-1 | |
4. | Zhang, H., Liu, Y., Chen, Q. Research Progress on Optoelectronic Thin Films Deposited by HiPIMS: Discharge Characteristics and Parameter Adjustment | [HiPIMS 沉积光电薄膜研究进展:放电特性和参数调控]. Zhongguo Biaomian Gongcheng/China Surface Engineering, 2022, 35(5): 93-104. DOI:10.11933/j.issn.1007-9289.20211231004 | |
5. | Bai, X., Cai, Q., Zhang, X. Research Progress of Crystalline Thin Films by High Power Impulse Magnetron Sputtering at a Low Temperature | [高能脉冲磁控溅射低温制备晶态薄膜的研究进展]. Zhongguo Biaomian Gongcheng/China Surface Engineering, 2022, 35(5): 105-115. DOI:10.11933/j.issn.1007-9289.20211213002 | |
6. | Li, Q., Zhang, M., Yan, W. et al. Effects of electron doping on the d0 magnetism in N-implanted ZnO and ZnAlO films. Ceramics International, 2022, 48(14): 19831-19836. DOI:10.1016/j.ceramint.2022.03.258 | |
7. | Egbo, K.O., Chibueze, T.C., Raji, A.T. et al. Effects of acceptor doping and oxygen stoichiometry on the properties of sputter-deposited p-type rocksalt NixZn1-xO (0.3≤x≤1.0) alloys. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.164224 |