Advanced Search+
Qian LI (李倩), Minju YING (英敏菊), Zhongwei LIU (刘忠伟), Lizhen YANG (杨丽珍), Qiang CHEN (陈强). The low temperature growth of stable p-type ZnO films in HiPIMS[J]. Plasma Science and Technology, 2021, 23(9): 95503-095503. DOI: 10.1088/2058-6272/ac0687
Citation: Qian LI (李倩), Minju YING (英敏菊), Zhongwei LIU (刘忠伟), Lizhen YANG (杨丽珍), Qiang CHEN (陈强). The low temperature growth of stable p-type ZnO films in HiPIMS[J]. Plasma Science and Technology, 2021, 23(9): 95503-095503. DOI: 10.1088/2058-6272/ac0687

The low temperature growth of stable p-type ZnO films in HiPIMS

Funds: The project was supported by National Natural Science Foundation of China (Nos. 11875090, 12075032, 11775028, 11875088, 11974048), Beijing Municipal National Science Foundation (Nos. 1192008, KZ202010015022) and BIGC (Nos. Ea201901, Ee202001).
More Information
  • Received Date: March 07, 2021
  • Revised Date: May 26, 2021
  • Accepted Date: May 27, 2021
  • In this study, the influence of substrate temperature on properties of Al-N co-doped p-type ZnO films is explored. Benefitting from the high ionization rate in high-power impulsed magnetron sputtering, the concentration of ionized nitrogen N+ and ionized zinc Zn+ were increased, which promoted the formation of ZnO films and lowered the necessary substrate temperature. After optimization, a co-doped p-type ZnO thin film with a resistivity lower than 0.35 Ω cm and a hole concentration higher than 5.34 × 1018 cm−3 is grown at 280 °C. X-ray diffraction results confirm that Al-N co-doping does not destruct the ZnO wurtzite structure. X-ray photoelectron spectroscopy demonstrates that the presence of Al promotes the formation of acceptor (No) defects in ZnO films, and ensures the role of Al in stabilizing p-type ZnO.
  • [1]
    Zhao X Y et al 2018 Solar RRL 2 1700194
    [2]
    Ou K et al 2019 J. Mater. Sci. 54 4049
    [3]
    Basak D et al 2003 J. Crys. Growth 256 73
    [4]
    Jeong E et al 2019 RSC Adv. 9 9160
    [5]
    Kumar M, Kim S K and Choi S Y 2009 Appl. Surf. Sci.256 1329
    [6]
    Hála M et al 2015 Prog. Photovolt. Res. Appl. 23 1630
    [7]
    Rezek J et al 2019 Thin Solid Films 679 35
    [8]
    Park D H et al 2010 Korean J. Mater. Res. 20 629
    [9]
    Horwat D, Mickan M and Chamorro W 2016 Phys. Stat. Sol. C 13 951
    [10]
    Sun Y J and Wang W X 2014 Key Eng. Mater. 609–610 113
    [11]
    Mahmood K and Samaa B M 2018 J. Exp. Theor. Phys.126 766
    [12]
    de León J A G et al 2019 SN Appl. Sci. 1 475
    [13]
    Chang S P et al 2009 Thin Solid Films 517 5054
    [14]
    Krishna Kumar M et al 2016 Mater. Today Proc. 3 1525
    [15]
    Li Q et al 2020 AIP Adv. 10 015125
    [16]
    Yuan Y et al 2018 Plasma Sci. Technol. 20 065501
    [17]
    Greczynski G et al 2019 J. Vac. Sci. Technol. A 37 060801
    [18]
    Gudmundsson J T et al 2012 J. Vac. Sci. Technol. A 30 030801
    [19]
    Mickan M et al 2016 Solar Energy Mater. Solar Cells 157 742
    [20]
    Barnes T M, Olson K and Wolden C A 2005 Appl. Phys. Lett.86 112112
    [21]
    Lu H P et al 2016 Mater. Lett. 165 123
    [22]
    Tu M L, Su C Y and Ma C Y 2006 J. Appl. Phys. 100 053705
    [23]
    Nakano Y et al 2005 Appl. Phys. Lett. 87 232104
    [24]
    Ismail A, Abdullah M J and Qaeed M A 2015 J. Lumin. 164 69
    [25]
    Kanai Y 1991 Jpn. J. Appl. Phys. 30 703
    [26]
    Hu Y M et al 2017 Appl. Phys. Lett. 110 141903
    [27]
    Zhuge F et al 2005 Thin Solid Films 476 272
    [28]
    Wang Z D et al 2020 AIP Adv. 10 035122
    [29]
    moon Y K, Kim S H and Park J W 2006 J. Mater. Sci. Mater.Electron. 17 973
    [30]
    Chou S M, Hon M H and Leu I C 2008 Appl. Surf. Sci.255 2958
    [31]
    Pathak T K, Kumar V and Purohit L P 2016 Optik 127 603
    [32]
    Ismail A et al 2021 J. King Saud Univ. Sci. 33 101229
    [33]
    Yuan G D et al 2005 Appl. Phys. Lett. 86 202106
    [34]
    Yamaya K et al 1998 Appl. Phys. Lett. 72 235
    [35]
    Zhu B L et al 2007 Phys. B Condens. Matter 396 95
    [36]
    Yu C F et al 2008 J. Phys. D Appl. Phys. 42 035001
    [37]
    Ye Z Z et al 2018 Nano Energy 52 527
    [38]
    Graham D M et al 2005 J. Appl. Phys. 97 103508
    [39]
    Wang P W et al 1997 Thin Solid Films 295 142
    [40]
    Yuan G D et al 2009 J. Cryst. Growth 311 2341
    [41]
    Zeng Y J et al 2005 Appl. Surf. Sci. 249 203
    [42]
    Yan Y F, Zhang S B and Pantelides S T 2001 Phys. Rev. Lett.86 5723
    [43]
    Tan S T et al 2007 Appl. Phys. Lett. 91 1172
    [44]
    Nakano Y et al 2005 Appl. Phys. Lett. 87 1
    [45]
    Harrison S E 1954 Phys. Rev. 93 52
    [46]
    Artús L et al 2007 Appl. Phys. Lett. 90 181911
  • Related Articles

    [1]Maria YOUNUS, N U REHMAN, M SHAFIQ, M NAEEM, M ZAKA-UL-ISLAM, M ZAKAULLAH. Evolution of plasma parameters in an Ar–N2/ He inductive plasma source with magnetic pole enhancement[J]. Plasma Science and Technology, 2017, 19(2): 25402-025402. DOI: 10.1088/2058-6272/19/2/025402
    [2]NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09
    [3]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [4]ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08
    [5]Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09
    [6]LIU Xuan(刘璇), GE Jie(葛婕), YANG Yi(杨轶), SONG Yixu(宋亦旭), REN Tianling(任天令). Feature Scale Simulation of PECVD of SiO 2 in SiH 4 /N 2 O Mixture[J]. Plasma Science and Technology, 2014, 16(4): 385-389. DOI: 10.1088/1009-0630/16/4/15
    [7]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [8]XIN Yu(信裕), DING Hongbin(丁洪斌). Ab initio Calculations of Electron-Impact Excitation Cross Sections for N 2[J]. Plasma Science and Technology, 2014, 16(2): 104-109. DOI: 10.1088/1009-0630/16/2/04
    [9]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [10]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07
  • Cited by

    Periodical cited type(7)

    1. Chen, S., Li, Z., Gao, Y. et al. Preparation of few-layer graphene by annealing Ni film with low carbon content deposited by direct current magnetron sputtering. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113421
    2. Li, Q., Qi, Y., Cheng, W. et al. Combined effects of electron doping and surface polarity on the ferromagnetism in Gd implanted polar ZnO wafers. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2022.167319
    3. Li, Q., Ying, M. Ion implantation induced d0 ferromagnetism in oxide semiconductors. Defect-Induced Magnetism in Oxide Semiconductors, 2023. DOI:10.1016/B978-0-323-90907-5.00019-1
    4. Zhang, H., Liu, Y., Chen, Q. Research Progress on Optoelectronic Thin Films Deposited by HiPIMS: Discharge Characteristics and Parameter Adjustment | [HiPIMS 沉积光电薄膜研究进展:放电特性和参数调控]. Zhongguo Biaomian Gongcheng/China Surface Engineering, 2022, 35(5): 93-104. DOI:10.11933/j.issn.1007-9289.20211231004
    5. Bai, X., Cai, Q., Zhang, X. Research Progress of Crystalline Thin Films by High Power Impulse Magnetron Sputtering at a Low Temperature | [高能脉冲磁控溅射低温制备晶态薄膜的研究进展]. Zhongguo Biaomian Gongcheng/China Surface Engineering, 2022, 35(5): 105-115. DOI:10.11933/j.issn.1007-9289.20211213002
    6. Li, Q., Zhang, M., Yan, W. et al. Effects of electron doping on the d0 magnetism in N-implanted ZnO and ZnAlO films. Ceramics International, 2022, 48(14): 19831-19836. DOI:10.1016/j.ceramint.2022.03.258
    7. Egbo, K.O., Chibueze, T.C., Raji, A.T. et al. Effects of acceptor doping and oxygen stoichiometry on the properties of sputter-deposited p-type rocksalt NixZn1-xO (0.3≤x≤1.0) alloys. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.164224

    Other cited types(0)

Catalog

    Article views (118) PDF downloads (98) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return