Advanced Search+
Yaocong XIE, Xiaoping LI, Fangfang SHEN, Bowen BAI, Yanming LIU, Xuyang CHEN, Lei SHI. Analysis of inverse synthetic aperture radar imaging in the presence of time-varying plasma sheath[J]. Plasma Science and Technology, 2022, 24(3): 035002. DOI: 10.1088/2058-6272/ac1d98
Citation: Yaocong XIE, Xiaoping LI, Fangfang SHEN, Bowen BAI, Yanming LIU, Xuyang CHEN, Lei SHI. Analysis of inverse synthetic aperture radar imaging in the presence of time-varying plasma sheath[J]. Plasma Science and Technology, 2022, 24(3): 035002. DOI: 10.1088/2058-6272/ac1d98

Analysis of inverse synthetic aperture radar imaging in the presence of time-varying plasma sheath

More Information
  • Author Bio:

    Fangfang SHEN: E-mail: ffshen@mail.xidian.edu.cn

  • Received Date: March 02, 2021
  • Revised Date: August 10, 2021
  • Accepted Date: August 12, 2021
  • Available Online: January 29, 2024
  • Published Date: March 09, 2022
  • The plasma sheath can induce radar signal modulation, causing not only ineffective target detection, but also defocusing in inverse synthetic aperture radar (ISAR) imaging. In this paper, through establishing radar echo models of the reentry object enveloped with time-varying plasma sheath, we simulated the defocusing of ISAR images in typical environment. Simulation results suggested that the ISAR defocusing is caused by false scatterings, upon which the false scatterings' formation mechanism and distribution property are analyzed and studied. The range of false scattering correlates with the electron density fluctuation frequency. The combined value of the electron density fluctuation and the pulse repetition frequency jointly determines the Doppler of false scattering. Two measurement metrics including peak signal-to-noise ratio and structural similarity are used to evaluate the influence of ISAR imaging.

  • This work was supported in part by National Natural Science Foundation of China (Nos. 61971330, 61701381, and 61627901), in part by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2019JM-177), and in part by the Chinese Postdoctoral Science Foundation.

  • [1]
    Steinberg B D 1988 Proc. IEEE 76 1578 doi: 10.1109/5.16351
    [2]
    Ausherman D A et al 1984 IEEE Trans. Aerosp. Electron. Syst. AES-20 363 doi: 10.1109/TAES.1984.4502060
    [3]
    Gupta R N et al 1992 J. Spacecr. Rockets 29 173 doi: 10.2514/3.26332
    [4]
    Hodara H 1961 Proc. IRE 49 1825 doi: 10.1109/JRPROC.1961.287709
    [5]
    Boyd I D 2007 Phys. Fluids 19 096102 doi: 10.1063/1.2771662
    [6]
    Xie K et al 2016 J. Appl. Phys. 119 023301 doi: 10.1063/1.4942440
    [7]
    Chen X Y et al 2018 IEEE Trans. Plasma Sci. 46 1755 doi: 10.1109/TPS.2018.2823539
    [8]
    Lin T C et al 1995 26th Plasmadynamics and Lasers Conf.(Reston, VA:American Institute of Aeronautics and Astronautics)(https://doi.org/10.2514/6.1995-1942)
    [9]
    Shi L et al 2012 Prog. Electromagn. Res. 123 321 doi: 10.2528/PIER11110201
    [10]
    Yang M et al 2015 Phys. Plasmas 22 022120 doi: 10.1063/1.4907904
    [11]
    Bai B W et al 2018 Phys. Plasmas 25 062101 doi: 10.1063/1.5021853
    [12]
    Yao B et al 2018 Aerosp. Sci. Technol. 78 480 doi: 10.1016/j.ast.2018.05.001
    [13]
    Liu S H and Guo L X 2016 IEEE Trans. Plasma Sci. 44 2838 doi: 10.1109/TPS.2016.2612003
    [14]
    Song L H et al 2019 AIP Adv. 9 055102 doi: 10.1063/1.5080619
    [15]
    Chen X Y et al 2017 IEEE Trans. Plasma Sci. 45 3166 doi: 10.1109/TPS.2017.2766786
    [16]
    Ding Y et al 2020 IEEE Trans. Plasma Sci. 48 4103 doi: 10.1109/TPS.2020.3029590
    [17]
    Bai B W et al 2015 IEEE Trans. Plasma Sci. 43 2588 doi: 10.1109/TPS.2015.2447536
    [18]
    Rybak J P and Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7 879 doi: 10.1109/TAES.1971.310328
    [19]
    Bai B W et al 2014 IEEE Trans. Plasma Sci. 42 3365 doi: 10.1109/TPS.2014.2349009
    [20]
    Ip H P and Rahmat-Samii Y 1998 IEEE Trans. Antennas Propag. 46 1593 doi: 10.1109/8.736606
    [21]
    Meng H F et al 2009 J. Infrared Millim. Terahertz Waves 30 199 doi: 10.1007/s10762-008-9438-6
    [22]
    Zhang X et al 2019 IEEE Access 7 140402 doi: 10.1109/ACCESS.2019.2943111
    [23]
    Chen W F and Zhao W W 2017 Rarefied Gas Dynamic Moment Method and Numerical Simulation(Beijing:Science Press)(in Chinese)
    [24]
    Potter D 2006 37th AIAA Plasmadynamics and Lasers Conf.(Reston, VA:American Institute of Aeronautics and Astronautics) p 3239
    [25]
    He G L et al 2014 IEEE Trans. Plasma Sci. 42 3975 doi: 10.1109/TPS.2014.2363840
    [26]
    Gürel Ç S and Öncü E 2009 J. Infrared Millim. Terahertz Waves 30 589 doi: 10.1007/s10762-009-9483-9
    [27]
    Chen C C and Andrews H C 1980 IEEE Trans. Aerosp. Electron. Syst. AES-16 2 doi: 10.1109/TAES.1980.308873
    [28]
    Walker J L 1980 IEEE Trans. Aerosp. Electron. Syst. AES-16 23 doi: 10.1109/TAES.1980.308875
    [29]
    Liu Z and Zhang S H 2000 2000 Record of the IEEE 2000 Int. Radar Conf. [Cat. No. 00CH37037](Piscataway, NJ:IEEE) p 255
    [30]
    Horé A and Ziou D 2010 2010 20th Int. Conf. on Pattern Recognition(Piscataway, NJ: IEEE) p 2366
  • Related Articles

    [1]Hui LIU (刘辉), Xiang NIU (牛翔), Huan WU (伍环), Daren YU (于达仁). Simulation study of the influence of leak electrons on the discharge characteristics of a cusped field thruster[J]. Plasma Science and Technology, 2019, 21(4): 45502-045502. DOI: 10.1088/2058-6272/aaf674
    [2]Le YANG (杨乐), Tianping ZHANG (张天平), Juanjuan CHEN (陈娟娟), Yanhui JIA (贾艳辉). Numerical study of low-frequency discharge oscillations in a 5 kW Hall thruster[J]. Plasma Science and Technology, 2018, 20(7): 75503-075503. DOI: 10.1088/2058-6272/aac012
    [3]Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7
    [4]Xinjing CAI (蔡新景), Xinxin WANG (王新新), Xiaobing ZOU (邹晓兵). Electron relaxation properties of Ar magnetron plasmas[J]. Plasma Science and Technology, 2018, 20(3): 35405-035405. DOI: 10.1088/2058-6272/aaa3d6
    [5]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [6]DUAN Ping (段萍), BIAN Xingyu (边兴宇), CAO Anning (曹安宁), LIU Guangrui (刘广睿), CHEN Long (陈龙), YIN Yan (殷燕). Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster[J]. Plasma Science and Technology, 2016, 18(5): 525-530. DOI: 10.1088/1009-0630/18/5/14
    [7]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [8]CAO Lihua(曹莉华), WANG Huan(王欢), ZHANG Hua(张华), LIU Zhanjun(刘占军), WU Junfeng(吴俊峰), LI Baiwen(李百文). Two-Dimensional Hybrid Model for High-Current Electron Beam Transport in a Dense Plasma[J]. Plasma Science and Technology, 2014, 16(11): 1007-1012. DOI: 10.1088/1009-0630/16/11/03
    [9]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [10]DUAN Ping(段萍), LI Xi (李肸), SHEN Hongjuan (沈鸿娟), CHEN Long (陈龙), E Peng (鄂鹏). Characteristics of a Sheath with Secondary Electron Emission in the Double Walls of a Hall Thruster[J]. Plasma Science and Technology, 2012, 14(9): 837-841. DOI: 10.1088/1009-0630/14/9/12

Catalog

    Figures(13)  /  Tables(4)

    Article views (126) PDF downloads (100) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return