Citation: | Jinjin LI, Xiongying DUAN, Weiying XIE, Zhihui HUANG, Minfu LIAO, Dequan WANG, Xiaotao HAN. A novel fault current limiter topology design based on liquid metal current limiter[J]. Plasma Science and Technology, 2022, 24(8): 085503. DOI: 10.1088/2058-6272/ac64f0 |
The liquid metal current limiter (LMCL) is regarded as a viable solution for reducing the fault current in a power grid. But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall, and reducing the erosion of the LMCL are challenging, not only theoretically, but also practically. In this work, a novel LMCL is designed with a resistive wall that can be connected to the current-limiting circuit inside the cavity. Specifically, a novel fault current limiter (FCL) topology is put forward where the novel LMCL is combined with a fast switch and current-limiting reactor. Further, the liquid metal self-pinch effect is modeled mathematically in three dimensions, and the gas-liquid two-phase dynamic diagrams under different short-circuit currents are obtained by simulation. The simulation results indicate that with the increase of current, the time for the liquid metal-free surface to begin depressing is reduced, and the position of the depression also changes. Different kinds of bubbles formed by the depressions gradually extend, squeeze, and break. With the increase of current, the liquid metal takes less time to break, but breaks still occur at the edge of the channel, forming arc plasma. Finally, relevant experiments are conducted for the novel FCL topology. The arcing process and current transfer process are analyzed in particular. Comparisons of the peak arc voltage, arcing time, current limiting efficiency, and electrode erosion are presented. The results demonstrate that the arc voltage of the novel FCL topology is reduced by more than 4.5 times and the arcing time is reduced by more than 12%. The erosions of the liquid metal and electrodes are reduced. Moreover, the current limiting efficiency of the novel FCL topology is improved by 1%‒5%. This work lays a foundation for the topology and optimal design of the LMCL.
This work was supported by National Natural Science Foundation of China (Nos. 51777025, 52177131) and the Interdisciplinary Program of the Wuhan National High Magnetic Field Center (No. WHMFC202130), Huazhong University of Science and Technology.
[1] |
Jiang Y Z et al 2021 Plasma Sci. Technol. 23 025505 doi: 10.1088/2058-6272/abd5a1
|
[2] |
Wang D Q et al 2020 Energies 13 4823 doi: 10.3390/en13184823
|
[3] |
Li J et al 2021 2020 29th Int. Symp. on Discharge and Electrical Insulation in Vacuum (ISDEIV) (Padova, Italy) (Consorzio RFX)
|
[4] |
Alghamdi H 2021 Entropy 23 655 doi: 10.3390/e23060655
|
[5] |
Naphade V, Ghate V and Dhole G 2021 Int. J. Electr. Power Energy Syst. 130 106943 doi: 10.1016/j.ijepes.2021.106943
|
[6] |
Liu Z et al 2021 IEEE Trans. Appl. Supercond. 31 5604107
|
[7] |
Chen H C et al 2021 IEEE Trans. Ind. Electron. 68 11576 doi: 10.1109/TIE.2020.3036217
|
[8] |
Ju X B et al 2016 Plasma Sci. Technol. 18 531 doi: 10.1088/1009-0630/18/5/15
|
[9] |
Yang Z et al 2019 IEEE Trans. Power Deliv. 34 661 doi: 10.1109/TPWRD.2019.2892501
|
[10] |
Niayesh K, Tepper J and Konig F 2006 IEEE Trans. Compon. Packag. Technol. 29 303 doi: 10.1109/TCAPT.2006.875880
|
[11] |
He H L et al 2017 Proc. CSEE 37 1053 (in Chinese)
|
[12] |
He H et al 2014 Electr. Energy Manage. Technol. (13) 1 (in Chinese) doi: 10.16628/j.cnki.2095-8188.2014.13.004
|
[13] |
Liu Y Y et al 2014 IEEE Trans. Compon. Packag. Manuf. Technol. 4 209 doi: 10.1109/TCPMT.2013.2292581
|
[14] |
Liu Y Y et al 2013 Plasma Sci. Technol. 15 1006 doi: 10.1088/1009-0630/15/10/09
|
[15] |
Liu Y Y et al 2012 Proc. CSEE 32 178 (in Chinese)
|
[16] |
He K et al 2016 Electr. Energy Manage. Technol. (13) 8 (in Chinese) doi: 10.16628/j.cnki.2095-8188.2016.13.002
|
[17] |
Liu Y et al 2012 Low Voltage Apparatus (1) 7 (in Chinese)
|
[18] |
Boeck T, Thess A and Terhoeven P 2006 Phys. Fluids 18 058103 doi: 10.1063/1.2204635
|
[19] |
Rong M Z et al 2010 IEEE Trans. Plasma Sci. 38 2056 doi: 10.1109/TPS.2010.2050704
|
[20] |
Zienicke E et al 2008 J. Therm. Sci. 17 261 doi: 10.1007/s11630-008-0261-0
|
[21] |
Mancha M B, Prokopec T and Świeżewska B 2021 J. High Energy Phys. 2021 70 doi: 10.1007/JHEP01(2021)070
|
[22] |
Xiao J Q and Li J H 2021 IEEE Trans. Compon. Packag. Manuf. Technol. 11 153 doi: 10.1109/TCPMT.2020.3041258
|
[23] |
Nishikawa S and Takahashi M 2019 Sens. Actuators A - Phys. 290 125 doi: 10.1016/j.sna.2019.03.020
|
[24] |
Chen X Q et al 2020 Int. J. Electr. Power Energy Syst. 114 105377 doi: 10.1016/j.ijepes.2019.105377
|
[25] |
He H L et al 2018 IEEE Trans. Compon. Packag. Manuf. Technol. 8 1391 doi: 10.1109/TCPMT.2018.2791435
|
[26] |
Pan Z H et al 2020 Plasma Sci. Technol. 22 025401 doi: 10.1088/2058-6272/ab4f00
|
[27] |
Li F et al 2021 Adv. Funct. Mater. 31 2008211 doi: 10.1002/adfm.202008211
|
[1] | Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035 |
[2] | Liying ZHU (朱立颖), Zhigang LIU (刘治钢), Xiaofeng ZHANG (张晓峰), Chao WANG (王超), Xiaofei LI (李小飞), Bingxin ZHAO (赵冰欣). Study on volt-ampere characteristics of solar array arcs in LEO spacecraft[J]. Plasma Science and Technology, 2019, 21(2): 25302-025302. DOI: 10.1088/2058-6272/aaf18a |
[3] | Safi ULLAH, Hailong LI (李海龙), Abdur RAUF, Lin MENG (蒙林), Bin WANG (王彬), Maoyan WANG (王茂琰). PMSE dependence on frequency observed simultaneously with VHF and UHF radars in the presence of precipitation[J]. Plasma Science and Technology, 2018, 20(11): 115302. DOI: 10.1088/2058-6272/aac8d4 |
[4] | Liying ZHU (朱立颖), Linchun FU (付林春), Ming QIAO (乔明), Bo CUI (崔波), Qi CHEN (陈琦), Junyi LIN (林君毅). The characteristics of primary and secondary arcs on a solar array in low earth orbit[J]. Plasma Science and Technology, 2017, 19(5): 55304-055304. DOI: 10.1088/2058-6272/aa607a |
[5] | WANG Yu (王玉), SU Dandan (苏丹丹), LI Yingjun (李英骏). Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect[J]. Plasma Science and Technology, 2016, 18(12): 1181-1185. DOI: 10.1088/1009-0630/18/12/07 |
[6] | DU Tengfei (杜腾飞), PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), HU Zhimeng (胡志猛), GE Lijian (葛理健), HU Liqun (胡立群), ZHONG Guoqiang (钟国强), PU Neng (普能), CHEN Jinxiang (陈金象), FAN Tieshuan (樊铁栓). Time Dependent DD Neutrons Measurement Using a Single Crystal Chemical Vapor Deposition Diamond Detector on EAST[J]. Plasma Science and Technology, 2016, 18(9): 950-953. DOI: 10.1088/1009-0630/18/9/12 |
[7] | GAO Fangfang (高芳芳), ZHANG Xiaokang (张小康), PU Yong (蒲勇), ZHU Qingjun (祝庆军), LIU Songlin (刘松林). Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(8): 865-869. DOI: 10.1088/1009-0630/18/8/13 |
[8] | QI Lei(齐磊), ZHANG Chunmei(张春梅), CHEN Qiang(陈强). Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells[J]. Plasma Science and Technology, 2014, 16(1): 45-49. DOI: 10.1088/1009-0630/16/1/10 |
[9] | HAO Xiping (郝希平), SONG Zhiqiang (宋志), HE Jian (贺健), LI Qiuze (李秋泽), et al.. Calculation of the Effect of Opacity on the Solar Spectral Lines of CIV[J]. Plasma Science and Technology, 2013, 15(8): 760-763. DOI: 10.1088/1009-0630/15/8/08 |
[10] | WANG Rong(王荣), FENG Zhao(冯钊), LIU Yunhong(刘运宏), LU Ming(鲁明). Effects of 50 keV and 100 keV Proton Irradiation on GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Plasma Science and Technology, 2012, 14(7): 647-649. DOI: 10.1088/1009-0630/14/7/18 |