Citation: | Yunming TAO, Yuebing XU, Kuan CHANG, Meiling CHEN, Sergey A STAROSTIN, Hujun XU, Liangliang LIN. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO[J]. Plasma Science and Technology, 2023, 25(8): 085504. DOI: 10.1088/2058-6272/acc14c |
In this study, Ag/γ-Al2O3 catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source and γ-alumina (γ-Al2O3) as the support. It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles (AgNPs) of good dispersion and uniformity on the alumina surface, leading to the formation of Ag/γ-Al2O3 catalysts in a green manner without traditional chemical reductants. Ag/γ-Al2O3 exhibited good catalytic activity and stability in CO oxidation reactions, and the activity increased with increase in the Ag content. For catalysts with more than 2 wt% Ag, 100% CO conversion can be achieved at 300 °C. The catalytic activity of the Ag/γ-Al2O3 catalysts is also closely related to the size of the γ-alumina, where Ag/nano-γ-Al2O3 catalysts demonstrate better performance than Ag/micro-γ-Al2O3 catalysts with the same Ag content. In addition, the catalytic properties of plasma-generated Ag/nano-γ-Al2O3 (Ag/γ-Al2O3-P) catalysts were compared with those of Ag/nano-γ-Al2O3 catalysts prepared by the traditional calcination approach (Ag/γ-Al2O3-C), with the plasma-generated samples demonstrating better overall performance. This simple, rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.
We would like to acknowledge financial support from National Natural Science Foundation of China (Nos. 52004102 and 22078125), Postdoctoral Science Foundation of China (No. 2021M690068), Fundamental Research Funds for the Central Universities (Nos. JUSRP221018 and JUSRP622038), Key Laboratory of Green Cleaning Technology and Detergent of Zhejiang Province (No. Q202204) and Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (No. GCP202112).
Supplementary material for this article is available https://doi.org/10.1088/2058-6272/acc14c
[1] |
Védrine J C 2017 Catalysts
7 341 doi: 10.3390/catal7110341
|
[2] |
García-Serna J Piñero-Hernanz R Durán-Martín D 2022 Catal. Today
387 237 doi: 10.1016/j.cattod.2021.11.021
|
[3] |
Witoon T et al 2022 Chem. Eng. J.
428 131389 doi: 10.1016/j.cej.2021.131389
|
[4] |
Marek E J García-Calvo Conde E 2021 Chem. Eng. J.
417 127981 doi: 10.1016/j.cej.2020.127981
|
[5] |
Chen Y, Qian S and Feng K 2022 Chem. Eng. Sci.
253 117597 doi: 10.1016/j.ces.2022.117597
|
[6] |
Wu K J Bohan G M D V Torrente-Murciano L 2017 React. Chem. Eng.
2 116 doi: 10.1039/C6RE00202A
|
[7] |
Ahmed J et al 2022 Powder Technol.
412 117975 doi: 10.1016/j.powtec.2022.117975
|
[8] |
Zhang X L et al 2021 Chem. Eng. Sci.
238 116588 doi: 10.1016/j.ces.2021.116588
|
[9] |
Ma X T et al 2020 Chem. Eng. Sci.
220 115648 doi: 10.1016/j.ces.2020.115648
|
[10] |
Lin L L et al 2021 J. Taiwan Inst. Chem. Eng.
122 311 doi: 10.1016/j.jtice.2021.04.061
|
[11] |
Li X H et al 2022 React. Chem. Eng.
7 346 doi: 10.1039/D1RE00446H
|
[12] |
Li X H, Zhao C-X and Lin L L 2022 Chem. Eng. Sci.
260 117849 doi: 10.1016/j.ces.2022.117849
|
[13] |
Lin L L et al 2022 Ind. Eng. Chem. Res.
61 2183 doi: 10.1021/acs.iecr.1c04048
|
[14] |
Lin L L et al 2021 Chem. Eng. J.
417 129355 doi: 10.1016/j.cej.2021.129355
|
[15] |
SriBala G et al 2019 J. Clean. Prod.
209 655 doi: 10.1016/j.jclepro.2018.10.203
|
[16] |
Delikonstantis E et al 2022 ACS Energy Lett.
7 1896902 doi: 10.1021/acsenergylett.2c00632
|
[17] |
Rui L C et al 2022 Chem. Eng. Res. Des.
186 125 doi: 10.1016/j.cherd.2022.07.038
|
[18] |
Di L B et al 2016 Plasma Sci. Technol.
18 544 doi: 10.1088/1009-0630/18/5/17
|
[19] |
Wang B W et al 2019 Plasma Sci. Technol.
21 065503 doi: 10.1088/2058-6272/ab079c
|
[20] |
Ji H H, Lin L L and Chang K 2023 J. CO2 Util.
68 102351 doi: 10.1016/j.jcou.2022.102351
|
[21] |
Liu Y et al 2020 Plasma Sci. Technol.
22 034016 doi: 10.1088/2058-6272/ab69bc
|
[22] |
Li Y et al 2023 Fuel Process. Technol.
242 107655 doi: 10.1016/j.fuproc.2023.107655
|
[23] |
Xu S et al 2020 ACS Catal.
10 12828 doi: 10.1021/acscatal.0c03620
|
[24] |
Han S W et al 2016 Chem. Eng. J.
283 99 doi: 10.1016/j.cej.2015.08.021
|
[25] |
Zhou Y, Wang Z Y and Liu C J 2014 Catal. Sci. Technol.
5 69 doi: 10.1039/C4CY00983E
|
[26] |
Sun T et al 2022 Ind. Eng. Chem. Res.
61 152 doi: 10.1021/acs.iecr.1c02447
|
[27] |
Lee K et al 2021 J. Ind. Eng. Chem.
93 461 doi: 10.1016/j.jiec.2020.10.026
|
[28] |
Xu H et al 2019 Mater. Lett.
255 126532 doi: 10.1016/j.matlet.2019.126532
|
[29] |
Lin L L et al 2019 React. Chem. Eng.
4 891 doi: 10.1039/C8RE00357B
|
[30] |
Wang J L, Ando R A and Camargo P H C 2014 ACS Catal.
4 3815 doi: 10.1021/cs501189m
|
[31] |
Ma C et al 2019 Ind. Eng. Chem. Res.
58 1848 doi: 10.1021/acs.iecr.8b05230
|
[32] |
Wang F et al 2019 ACS Catal.
9 1437 doi: 10.1021/acscatal.8b03744
|
[33] |
Jing X et al 2014 RSC Adv.
4 27597 doi: 10.1039/C4RA03312D
|
[34] |
Lin L L and Wang Q 2015 Plasma Chem. Plasma P.
35 925 doi: 10.1007/s11090-015-9640-y
|
[35] |
Neyts E C et al 2015 Chem. Rev.
115 13408 doi: 10.1021/acs.chemrev.5b00362
|
[36] |
Whitehead J C 2019 Front. Chem. Sci. Eng.
13 264 doi: 10.1007/s11705-019-1794-3
|
[37] |
Bogaerts A et al 2020 Phys. D: Appl. Phys.
53 443001 doi: 10.1088/1361-6463/ab9048
|
[38] |
Girard-Sahun F et al 2022 Chem. Eng. J.
442 136268 doi: 10.1016/j.cej.2022.136268
|
[39] |
Weltmann K-D et al 2019 Plasma Process Polym.
16 1800118 doi: 10.1002/ppap.201800118
|
[40] |
Ma S et al 2022 Chem. Eng. J.
435 134859 doi: 10.1016/j.cej.2022.134859
|
[41] |
Camposeco R Zanella R 2022 Environ. Sci. Pollut. Res.
29 76992 doi: 10.1007/s11356-022-21076-2
|
[42] |
Koo K Y, Jung U H and Yoon W L 2014 Int. J. Hydrogen Energ.
39 5696 doi: 10.1016/j.ijhydene.2014.01.128
|