Advanced Search+
Ye HUA, Ping WU, Hong WAN, Shuxin BAI, Jinyu GONG, Meng ZHU, Xianchen BAI, Guangshuai ZHANG. Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode[J]. Plasma Science and Technology, 2023, 25(9): 095402. DOI: 10.1088/2058-6272/acc8bb
Citation: Ye HUA, Ping WU, Hong WAN, Shuxin BAI, Jinyu GONG, Meng ZHU, Xianchen BAI, Guangshuai ZHANG. Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode[J]. Plasma Science and Technology, 2023, 25(9): 095402. DOI: 10.1088/2058-6272/acc8bb

Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode

More Information
  • Corresponding author:

    Ye HUA, E-mail: huaye@nint.ac.cn

  • Received Date: October 31, 2022
  • Revised Date: March 08, 2023
  • Accepted Date: March 28, 2023
  • Available Online: December 05, 2023
  • Published Date: June 05, 2023
  • In this paper, three kinds of materials including graphite, titanium (Ti) and molybdenum (Mo) are used as anodes to figure out the influence factors of anode material on the characteristics of the intense electron beam diode. The results show that the characteristics of diode are mainly determined by the cathode plasma motion under a 15 mm diode gap, in which the typical electron beam parameters are 280 kV, 3.5 kA. When the diode gap is reduced to 5 mm, the voltage of the electron beam reduces to about 200 kV, and its current increases to more than 8.2 kA. It is calculated that the surface temperatures of Ti and Mo anodes are higher than their melting points. The diode plasma luminescence images show that Ti and Mo anodes produce plasmas soon after the bombardment of electron beams. Ti and Mo lines are respectively found in the plasma composition of Ti and Mo anode diodes. Surface melting traces are also observed on Ti and Mo anodes by comparing the micromorphologies before and after bombardment of the electron beam. These results suggest that the time of anode plasma generation is closely related to the anode material. Compared with graphite, metal Ti and Mo anodes are more likely to produce large amounts of plasma due to their more significant temperature rise effect. According to the moment that anode plasma begins to generate, the average expansion velocities of cathode and anode plasma are estimated by fitting the improved space-charge limited flow model. This reveals that generation and motion of the anode plasma significantly affect the characteristics of intense electron beam diode.

  • The authors would like to thank Dr D Cai, Dr H T Wang, Dr X L Sun and Mr L Luo for their help in experiments.

  • [1]
    Kwan T J T, Snell C M and Christenson P J 2000 Phys. Plasmas 7 2215 doi: 10.1063/1.874043
    [2]
    Sanford T W L et al 1989 IEEE Trans. Nucl. Sci. 36 1931 doi: 10.1109/23.45389
    [3]
    Zhu J et al 2010 IEEE Trans. Plasma Sci. 38 2873 doi: 10.1109/TPS.2010.2061869
    [4]
    Maenchen J et al 2004 Proc. IEEE 92 1021 doi: 10.1109/JPROC.2004.829056
    [5]
    Saxena A et al 2016 IEEE Trans. Plasma Sci. 44 2399 doi: 10.1109/TPS.2016.2596879
    [6]
    Shiffler D A et al 2002 IEEE Trans. Plasma Sci. 30 1232 doi: 10.1109/TPS.2002.802146
    [7]
    Cai D et al 2016 Laser Part. Beams 34 151 doi: 10.1017/S0263034615001068
    [8]
    Elfsberg M et al 2008 IEEE Trans. Plasma Sci. 36 688 doi: 10.1109/TPS.2008.922222
    [9]
    Saveliev Y M, Sibbett W and Parkes D M 2002 Appl. Phys. Lett. 81 2343 doi: 10.1063/1.1506015
    [10]
    Lynn C F et al 2015 IEEE Trans. Electron Devices 62 2044 doi: 10.1109/TED.2015.2424076
    [11]
    An W et al 2011 J. Appl. Phys. 110 093304 doi: 10.1063/1.3660764
    [12]
    Roy A et al 2009 Phys. Plasmas 16 053103 doi: 10.1063/1.3129802
    [13]
    Ju J C, Liu L and Cai D 2014 Appl. Phys. Lett. 104 234102 doi: 10.1063/1.4882162
    [14]
    Beilis I I et al 2005 IEEE Trans. Plasma Sci. 33 408 doi: 10.1109/TPS.2005.845015
    [15]
    Saveliev Y M, Sibbett W and Parkes D M 2003 J. Appl. Phys. 94 5776 doi: 10.1063/1.1618359
    [16]
    Sun J and Chen C H 2020 IEEE Trans. Plasma Sci. 48 3535 doi: 10.1109/TPS.2020.3015666
    [17]
    Liang Y Q et al 2018 IEEE Trans. Plasma Sci. 46 384 doi: 10.1109/TPS.2018.2792905
    [18]
    Cai D et al 2014 Laser Part. Beams 32 443 doi: 10.1017/S0263034614000366
    [19]
    Li L M et al 2008 J. Phys. D: Appl. Phys. 41 125201 doi: 10.1088/0022-3727/41/12/125201
    [20]
    Pushkarev A I and Sazonov R V 2009 IEEE Trans. Plasma Sci. 37 1901 doi: 10.1109/TPS.2009.2020514
    [21]
    Menon R et al 2010 J. Appl. Phys. 107 093301 doi: 10.1063/1.3399650
    [22]
    Roy A et al 2011 Phys. Plasmas 18 103108 doi: 10.1063/1.3646361
    [23]
    Kramida A et al 2017 NIST atomic spectra database (ver. 5.5.1) National Institute of Standards and Technology (Gaithersburg, MD) https://physics.nist.gov/asd
    [24]
    Kwon Y et al 2021 Mater. Charact. 172 110870 doi: 10.1016/j.matchar.2020.110870
    [25]
    Jones S S 1970 Carbon 8 685 doi: 10.1016/0008-6223(70)90061-8
    [26]
    Parker R K, Anderson R E and Duncan C V 1974 J. Appl. Phys. 45 2463 doi: 10.1063/1.1663615
    [27]
    Cho G, Choi E H and Uhm H S 2013 IEEE Trans. Plasma Sci. 41 1635 doi: 10.1109/TPS.2013.2261323

Catalog

    Figures(12)  /  Tables(1)

    Article views (27) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return