Citation: | Qingrui ZHOU, Yanjie ZHANG, Chaofeng SANG, Jiaxian LI, Guoyao ZHENG, Yilin WANG, Yihan WU, Dezhen WANG. Simulation of tungsten impurity transport by DIVIMP under different divertor magnetic configurations on HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104003. DOI: 10.1088/2058-6272/ad6817 |
Tungsten (W) accumulation in the core, depending on W generation and transport in the edge region, is a severe issue in fusion reactors. Compared to standard divertors (SDs), snowflake divertors (SFDs) can effectively suppress the heat flux, while the impact of magnetic configurations on W core accumulation remains unclear. In this study, the kinetic code DIVIMP combined with the SOLPS-ITER code is applied to investigate the effects of divertor magnetic configurations (SD versus SFD) on W accumulation during neon injection in HL-3. It is found that the W concentration in the core of the SFD is significantly higher than that of the SD with similar total W erosion flux. The reasons for this are: (1) W impurities in the core of the SFD mainly originate from the inner divertor, which has a short leg, and the source is close to the divertor entrance and upstream separatrix. Furthermore, the W ionization source (SW0) is much stronger, especially near the divertor entrance. (2) The region overlap of SW0 and FW,TOT pointing upstream promote W accumulation in the core. Moreover, the influence of W source locations at the inner target on W transport in the SFD is investigated. Tungsten impurity in the core is mainly contributed by target erosion in the common flux region (CFR) away from the strike point. This is attributed to the fact that the W source at this location enhances the ionization source above the W ion stagnation point, which sequentially increases W penetration. Therefore, the suppression of far SOL inner target erosion can effectively prevent W impurities from accumulating in the core.
This work was supported by National Natural Science Foundation of China (Nos. 12235002 and 12122503), National Key R&D Program of China (No. 2018YFE0301101), Dalian Science & Technology Talents Program (No. 2022RJ11), and Xingliao Talent Project (No. XLYC2203182).
[1] |
Pitts R A et al 2019 Nucl. Mater. Energy 20 100696 doi: 10.1016/j.nme.2019.100696
|
[2] |
Ryutov D D and Soukhanovskii V A 2015 Phys. Plasmas 22 110901 doi: 10.1063/1.4935115
|
[3] |
Zhang Y J et al 2020 Nucl. Mater. Energy 25 100803 doi: 10.1016/j.nme.2020.100803
|
[4] |
Zheng G Y et al 2016 Nucl. Fusion 56 126013 doi: 10.1088/0029-5515/56/12/126013
|
[5] |
Stangeby P C and Elder J D 1992 J. Nucl. Mater. 196–198 258 doi: 10.1016/S0022-3115(06)80042-5
|
[6] |
Wang J et al 2023 Phys. Plasmas 30 043905 doi: 10.1063/5.0137801
|
[7] |
Nichols J H et al 2021 Nucl. Fusion 61 096018 doi: 10.1088/1741-4326/ac14e6
|
[8] |
Guo J et al 2021 Plasma Phys. Control. Fusion 63 125006 doi: 10.1088/1361-6587/ac2afa
|
[9] |
Xu G L et al 2022 Nucl. Mater. Energy 33 101259 doi: 10.1016/j.nme.2022.101259
|
[10] |
Kumpulainen H A et al 2020 Nucl. Mater. Energy 25 100784 doi: 10.1016/j.nme.2020.100784
|
[11] |
Wang H et al 2022 Nucl. Fusion 62 126018 doi: 10.1088/1741-4326/ac8fa4
|
[12] |
Ma X et al 2020 Phys. Scr. T171 014072 doi: 10.1088/1402-4896/ab4a39
|
[13] |
Sinclair G et al 2022 Nucl. Fusion 62 106024 doi: 10.1088/1741-4326/ac8b95
|
[14] |
Abrams T et al 2021 Phys. Scr. 96 124073 doi: 10.1088/1402-4896/ac3c5f
|
[15] |
Maeker J B et al 2022 Nucl. Mater. Energy 33 101309 doi: 10.1016/j.nme.2022.101309
|
[16] |
Zamperini S A et al 2022 Nucl. Fusion 62 026037 doi: 10.1088/1741-4326/ac3fe7
|
[17] |
Zamperini S et al 2023 Fusion Sci. Technol. 79 36 doi: 10.1080/15361055.2022.2082791
|
[18] |
Gao S L et al 2021 AIP Adv. 11 025233 doi: 10.1063/5.0037381
|
[19] |
Gao S L et al 2022 Plasma Sci. Technol. 24 075104 doi: 10.1088/2058-6272/ac608f
|
[20] |
Wang Y L et al 2021 Plasma Phys. Control. Fusion 63 085002 doi: 10.1088/1361-6587/ac0351
|
[21] |
Wang Y L et al 2023 Nucl. Fusion 63 096024 doi: 10.1088/1741-4326/aceb09
|
[22] |
Gallo A et al 2020 Phys. Scr. T171 014013 doi: 10.1088/1402-4896/ab4308
|
[23] |
Ciraolo G et al 2021 Nucl. Fusion 61 126015 doi: 10.1088/1741-4326/ac2439
|
[24] |
Di Genova S et al 2021 Nucl. Fusion 61 106019 doi: 10.1088/1741-4326/ac2026
|
[25] |
Schneider R et al 2006 Contrib. Plasma Phys. 46 3 doi: 10.1002/ctpp.200610001
|
[26] |
Makkonen T et al 2011 J. Nucl. Mater. 415 S479 doi: 10.1016/j.jnucmat.2010.08.023
|
[27] |
Elder J D et al 2005 J. Nucl. Mater. 337–339 79 doi: 10.1016/j.jnucmat.2004.10.138
|
[28] |
Xu Y C et al 2021 Plasma Phys. Control. Fusion 63 095003 doi: 10.1088/1361-6587/ac11b3
|
[29] |
Zhao X L et al 2022 Nucl. Fusion 62 126071 doi: 10.1088/1741-4326/ac9b77
|
[30] |
Zhang Y J et al 2022 Nucl. Fusion 62 106006 doi: 10.1088/1741-4326/ac8564
|
[31] |
Petrie T W et al 2008 Nucl. Fusion 48 045010 doi: 10.1088/0029-5515/48/4/045010
|
[32] |
Warrier M, Schneider R and Bonnin X 2004 Comput. Phys. Commun. 160 46 doi: 10.1016/j.cpc.2004.02.011
|
[33] |
Cupak C et al 2021 Appl. Surf. Sci. 570 151204 doi: 10.1016/j.apsusc.2021.151204
|
[34] |
Ding R et al 2016 Nucl. Fusion 56 016021 doi: 10.1088/0029-5515/56/1/016021
|
[35] |
Krieger K et al 1999 J. Nucl. Mater. 266–269 207 doi: 10.1016/S0022-3115(98)00890-3
|
[36] |
Schmid K et al 2010 Nucl. Fusion 50 105004 doi: 10.1088/0029-5515/50/10/105004
|
[37] |
Zhou Q R et al 2020 Nucl. Mater. Energy 25 100849 doi: 10.1016/j.nme.2020.100849
|
[38] |
Wang L et al 2022 Nucl. Fusion 62 076002 doi: 10.1088/1741-4326/ac4774
|
[39] |
Hitzler F et al 2020 Plasma Phys. Control. Fusion 62 085013 doi: 10.1088/1361-6587/ab9b00
|
[40] |
Zhao X L et al 2020 Plasma Phys. Control. Fusion 62 055015 doi: 10.1088/1361-6587/ab831b
|
[41] |
Guo J et al 2023 Nucl. Fusion 63 126033 doi: 10.1088/1741-4326/ad00cc
|
[42] |
Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Boca Raton: CRC Press
|
[43] |
Wang H et al 2024 Nucl. Fusion 64 046009 doi: 10.1088/1741-4326/ad29bc
|
[44] |
Dux R et al 2011 Nucl. Fusion 51 119501 doi: 10.1088/0029-5515/51/11/119501
|
[1] | Ruihai TONG, Yu ZHOU, Wulyu ZHONG, Jie WEN, Zhongbing SHI, Xiaolan ZOU, Anshu LIANG, Zengchen YANG, Min JIANG, Xin YU, Yuqi SHEN. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak[J]. Plasma Science and Technology, 2025, 27(1): 015102. DOI: 10.1088/2058-6272/ad8c86 |
[2] | Kexi Han, Zhongbing Shi, Xin Yu, Min Jiang, Zengchen Yang, Yu Zhou, Yuqi Shen, Weichu Deng, Liwen Hu, Anshu Liang, Peiwan Shi, Sen Xu. Quasi-optical characterization and preliminary experimental results of electron cyclotron emission imaging on HL-3 tokamak[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adc29a |
[3] | Yifei ZHAO, Yueqiang LIU, Guangzhou HAO, Zhengxiong WANG, Guanqi DONG, Shuo WANG, Chunyu LI, Guanming YANG, Yutian MIAO, Yongqin WANG. Loss of energetic particles due to feedback control of resistive wall mode in HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104002. DOI: 10.1088/2058-6272/ad547e |
[4] | Junren MOU, Yonggao LI, Yuan LI, Zaihong WANG, Baogang DING, Haoxi WANG, Jiang YI, Zhongbing SHI. Electron density measurement by the three boundary channels of HCOOH laser interferometer on the HL-3 tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034013. DOI: 10.1088/2058-6272/ad127a |
[5] | WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03 |
[6] | ZHOU Yongjie(周永杰), YUAN Qianghua(袁强华), WANG Xiaomin(王晓敏), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Optical Spectroscopic Investigation of Ar/CH 3 OH and Ar/N 2 /CH 3 OH Atmospheric Pressure Plasma Jets[J]. Plasma Science and Technology, 2014, 16(2): 99-103. DOI: 10.1088/1009-0630/16/2/03 |
[7] | CUI Xuewu (崔学武), PAN Yudong (潘宇东), CUI Zhengying (崔正英), LI Jiaxian (李佳鲜), et al.. HL-2M Divertor Geometry Exploration with SOLPS5.0[J]. Plasma Science and Technology, 2013, 15(12): 1184-1189. DOI: 10.1088/1009-0630/15/12/04 |
[8] | HU Jing (胡菁), ZHANG Yanwen (张艳文), WANG Xianping (王先平), et al.. Effects of Si 3+ and H + Irradiation on Tungsten Evaluated by Internal Friction Method[J]. Plasma Science and Technology, 2013, 15(10): 1071-1075. DOI: 10.1088/1009-0630/15/10/20 |
[9] | HUANG Xianli (黄贤礼), SHI Zhongbing (石中兵), CUI Zhengying (崔正英), ZHONG Wulv (钟武律), DONG Yunbo (董云波), CHEN Chengyuan (陈程远), FENG Beibin (冯北滨), YAO Lianghua (姚良骅), LIU Zetian (刘泽田), DING Xuantong (丁玄同), et al. Heat Transport During H-Mode in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 221-224. DOI: 10.1088/1009-0630/15/3/06 |
[10] | WANG Junyi (王君一), CHEN Yiping(陈一平). Study of Carbon Impurity Transport at SOL in EAST[J]. Plasma Science and Technology, 2010, 12(5): 535-539. |