Citation: | Yiming ZU, Zhiwei MA, Yuchen XU. Magnetohydrodynamic simulation study of impurity radiation-excited and driven tearing mode[J]. Plasma Science and Technology, 2025, 27(3): 035102. DOI: 10.1088/2058-6272/ad9e91 |
Tearing modes may play an important role in the density limit disruption. The Magnetohydrodynamic (MHD) code CLT with impurity modules is used to study the tearing mode excited and driven by impurity radiation. The impurity radiation can lead to plasma contraction and local enhancement of the current density. When the locally enhanced region of the current density approaches to the resonance surface, the tearing mode can be excited, even if the tearing mode is stable in the initial equilibrium. Through a scan of the initial atomic number (Z) and impurity concentrations, it is found that impurities with different Z values exhibit similar behaviors in the radiation-driven tearing mode. The impurity radiation can drive tearing mode growth through temperature cooling near the resonance surface, and there exists a linear relationship between the temperature perturbation caused by impurity radiation and the linear growth rate of the tearing mode. Additionally, the impurity can promote the growth of magnetic islands through the radiation cooling inside the magnetic island, and there exists a correlation between the initial parameters of impurity and the width of the saturated magnetic island.
This work was supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Nos. 2019YFE03030004 and 2022YFE03100001).
[1] |
Wesson J 2011 Tokamaks: Vol. 149 4th ed (Oxford: Oxford University Press
|
[2] |
Greenwald M et al 1988 Nucl. Fusion 28 2199 doi: 10.1088/0029-5515/28/12/009
|
[3] |
Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27 doi: 10.1088/0741-3335/44/8/201
|
[4] |
Lipschultz B et al 1984 Nucl. Fusion 24 977 doi: 10.1088/0029-5515/24/8/002
|
[5] |
Shi P et al 2017 Nucl. Fusion 57 116052 doi: 10.1088/1741-4326/aa80a6
|
[6] |
Savrukhin P V et al 1994 Nucl. Fusion 34 317 doi: 10.1088/0029-5515/34/3/I01
|
[7] |
Pietrzyk Z A et al 1992 Nucl. Fusion 32 1735 doi: 10.1088/0029-5515/32/10/I04
|
[8] |
Schuller F C 1995 Plasma Phys. Control. Fusion 37 A135 doi: 10.1088/0741-3335/37/11A/009
|
[9] |
Teng Q et al 2018 Nucl. Fusion 58 106024 doi: 10.1088/1741-4326/aad7c9
|
[10] |
Xu H W et al 2020 Plasma Phys. Control. Fusion 62 105009 doi: 10.1088/1361-6587/aba768
|
[11] |
Liu Y F and Li J Q 2024 Plasma Sci. Technol. 26 015101 doi: 10.1088/2058-6272/ad0c9b
|
[12] |
Zhang X L et al 2021 Plasma Sci. Technol. 23 125101 doi: 10.1088/2058-6272/ac1dfc
|
[13] |
He L et al 2022 Plasma Sci. Technol. 24 064003 doi: 10.1088/2058-6272/ac5f81
|
[14] |
Clauser C F et al 2021 Nucl. Fusion 61 116003 doi: 10.1088/1741-4326/ac233b
|
[15] |
Hu D et al 2021 Plasma Phys. Control. Fusion 63 125003 doi: 10.1088/1361-6587/ac2afb
|
[16] |
Lyons B C et al 2019 Plasma Phys. Control. Fusion 61 064001 doi: 10.1088/1361-6587/ab0e42
|
[17] |
Izzo V A 2013 Phys. Plasmas 20 056107 doi: 10.1063/1.4803896
|
[18] |
Furth H P, Rutherford P H and Selberg H 1973 Phys. Fluids 16 1054 doi: 10.1063/1.1694467
|
[19] |
Wesson J A et al 1989 Nucl. Fusion 29 641 doi: 10.1088/0029-5515/29/4/009
|
[20] |
Stabler A et al 1992 Nucl. Fusion 32 1557 doi: 10.1088/0029-5515/32/9/I05
|
[21] |
Suttrop W et al 1997 Nucl. Fusion 37 119 doi: 10.1088/0029-5515/37/1/I09
|
[22] |
Kleva R G and Drake J F 1991 Phys. Fluids B: Plasma Phys. 3 372 doi: 10.1063/1.859747
|
[23] |
Sykes A and Wesson J A 1980 Phys. Rev. Lett. 44 1215 doi: 10.1103/PhysRevLett.44.1215
|
[24] |
Gates D A and Delgado-Aparicio L 2012 Phys. Rev. Lett. 108 165004 doi: 10.1103/PhysRevLett.108.165004
|
[25] |
Gates D A, Delgado-Aparicio L and White R B 2013 Nucl. Fusion 53 063008 doi: 10.1088/0029-5515/53/6/063008
|
[26] |
Teng Q et al 2016 Nucl. Fusion 56 106001 doi: 10.1088/0029-5515/56/10/106001
|
[27] |
Wang S and Ma Z W 2015 Phys. Plasmas 22 122504 doi: 10.1063/1.4936977
|
[28] |
Zhang W et al 2021 Comput. Phys. Commun. 269 108134 doi: 10.1016/j.cpc.2021.108134
|
[29] |
Zhang H W et al 2019 Int. J. Comput. Fluid Dyn. 33 393 doi: 10.1080/10618562.2019.1683167
|
[30] |
Zhang W et al 2022 Phys. Plasmas 29 102509 doi: 10.1063/5.0109277
|
[31] |
Whyte D G 1997 Energy balance, radiation and stability during rapid plasma termination via impurity pellet injections on DIII-D In: Proceedings of the 24th EPS Conference on Controlled Fusion and Plasma Physics Berchtesgaden 1997: 1137
|
[32] |
Post D E et al 1977 At. Data Nucl. Data Tables 20 397 doi: 10.1016/0092-640X(77)90026-2
|
[33] |
Duan L, Wang X W and Zhong X L 2010 J. Comput. Phys. 229 7207 doi: 10.1016/j.jcp.2010.06.008
|
[34] |
Cheng C Z and Chance M S 1987 J. Comput. Phys. 71 124 doi: 10.1016/0021-9991(87)90023-4
|
[35] |
Hegna C C and Callen J D 1994 Phys. Plasmas 1 2308 doi: 10.1063/1.870628
|
[36] |
White R B, Gates D A and Brennan D P 2015 Phys. Plasmas 22 022514 doi: 10.1063/1.4913433
|
[1] | LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d |
[2] | Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Kun LU (陆坤), Zhongwei WANG (王忠伟), Jianfeng ZHANG (张剑峰), Yongfa QIN (秦永法). Thermal analysis of the cryostat feed through for the ITER Tokamak TF feeder[J]. Plasma Science and Technology, 2017, 19(4): 45601-045601. DOI: 10.1088/2058-6272/aa57ec |
[3] | DU Hongfei (杜红飞), CHEN Dehong (陈德鸿), DUAN Wenxue (段文学), JIANG Jieqiong (蒋洁琼), WU Yican (吴宜灿), FDS Team. Physics Analysis and Optimization Studies for a Fusion Neutron Source Based on a Gas Dynamic Trap[J]. Plasma Science and Technology, 2014, 16(12): 1153-1157. DOI: 10.1088/1009-0630/16/12/12 |
[4] | ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Mechanical Analysis and Optimization of ITER Upper ELM Coil & Feeder[J]. Plasma Science and Technology, 2014, 16(8): 794-799. DOI: 10.1088/1009-0630/16/8/11 |
[5] | KANG Weishan(康伟山), YUAN Tao(袁涛), SUN Qian(孙倩), WU Jihong(吴继红), CHEN Jiming(谌继明). Numerical Analyses of Electromagnetic Forces on the ITER Blanket Module Shield Block During Major Disruptions[J]. Plasma Science and Technology, 2014, 16(7): 701-705. DOI: 10.1088/1009-0630/16/7/12 |
[6] | HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), XU Yang (徐杨), FENG Changle (冯昌乐). Limit Analysis for the Mechanical Structure of the ITER Neutron Shielding Block[J]. Plasma Science and Technology, 2013, 15(4): 391-396. DOI: 10.1088/1009-0630/15/4/15 |
[7] | LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20 |
[8] | WANG Songke (王松可), SONG Yuntao (宋云涛), XIE Han (谢韩), LEI Mingzhun (雷明准). Thermal-Structural Coupled Analysis of ITER Torus Cryo-Pump Housing[J]. Plasma Science and Technology, 2012, 14(11): 1011-1016. DOI: 10.1088/1009-0630/14/11/10 |
[9] | LEI Mingzhun (雷明准), SONG Yuntao (宋云涛), DU Shijun (杜世俊), YE Minyou (叶民友), XI Weibin(奚维斌), LIU Xufeng (刘旭峰), LIU Chen (刘辰). Preliminary Thermal Mechanical Analysis of the Equatorial Thermal Shield for ITER[J]. Plasma Science and Technology, 2012, 14(10): 932-635. DOI: 10.1088/1009-0630/14/10/14 |
[10] | HAO Changduana(郝长端), ZHANG Minga(张明), DING Yonghua(丁永华), RAO Boa(饶波), CEN Yishuna(岑义顺), ZHUANG Ge(庄革). Stress and Thermal Analysis of the In-Vessel Resonant Magnetic Perturbation Coils on the J-TEXT Tokamak[J]. Plasma Science and Technology, 2012, 14(1): 83-88. DOI: 10.1088/1009-0630/14/1/18 |