Advanced Search+
Li FEI (费力), Bingbing ZHAO (赵兵兵), Xiong LIU (刘雄), Liming HE (何立明), Jun DENG (邓俊), Jianping LEI (雷健平), Zichen ZHAO (赵子晨), Zhiyu ZHAO (赵志宇). Application study on plasma ignition in aeroengine strut–cavity–injector integrated afterburner[J]. Plasma Science and Technology, 2021, 23(10): 105504. DOI: 10.1088/2058-6272/ac183c
Citation: Li FEI (费力), Bingbing ZHAO (赵兵兵), Xiong LIU (刘雄), Liming HE (何立明), Jun DENG (邓俊), Jianping LEI (雷健平), Zichen ZHAO (赵子晨), Zhiyu ZHAO (赵志宇). Application study on plasma ignition in aeroengine strut–cavity–injector integrated afterburner[J]. Plasma Science and Technology, 2021, 23(10): 105504. DOI: 10.1088/2058-6272/ac183c

Application study on plasma ignition in aeroengine strut–cavity–injector integrated afterburner

Funds: This work is supported by National Natural Science Foundation of China (Nos. 51806245 and 51436008) and the Science and Technology Projects of Shaanxi Province (No. 2020JM-349).
More Information
  • Received Date: April 05, 2021
  • Revised Date: July 23, 2021
  • Accepted Date: July 25, 2021
  • To increase the thrust-weight ratio in next-generation military aeroengines, a new integrated afterburner was designed in this study. The integrated structure of a combined strut–cavity–injector was applied to the afterburner. To improve ignition characteristics in the afterburner, a new method using a plasma jet igniter was developed and optimized for application in the integrated afterburner. The effects of traditional spark igniters and plasma jet igniters on ignition processes and ignition characteristics of afterburners were studied and compared with the proposed design. The experimental results show that the strut–cavity–injector combination can achieve stable combustion, and plasma ignition can improve ignition characteristics. Compared with conventional spark ignition, plasma ignition reduced the ignition delay time by 67 ms. Additionally, the ignition delay time was reduced by increasing the inlet velocity and reducing the excess air coefficient. This investigation provides an effective and feasible method to apply plasma ignition in aeroengine afterburners and has potential engineering applications.
  • [1]
    Sun Y C et al 2011 Aeronaut. Sci. Technol. 04 71 (in Chinese)
    [2]
    Manikandan S and Sujith R I 2020 Exp. Therm. Fluid Sci. 114 110046
    [3]
    Huang Y K et al 2021 Energy 216 119142
    [4]
    Nakaya S et al 2021 Proc. Combust. Inst. 38 5933
    [5]
    Wang H B et al 2013 Int. J. Hydrog. Energy 38 12078
    [6]
    Huang W et al 2012 Acta Astronaut. 73 1
    [7]
    Wang Z G et al 2015 Proc. Combust. Inst. 35 2137
    [8]
    Yamashita R et al 2021 J. Thermal Sci. Technol. 16 JTST0014
    [9]
    Feyz M E et al 2019 Comput. Fluids 183 28
    [10]
    Kang R et al 2021 Proc. Combust. Inst. 38 6493
    [11]
    Zhao S L and Fan Y X 2019 Aerosp. Sci. Technol. 91 561
    [12]
    Sun M B et al 2016 Acta Astronaut. 127 112
    [13]
    Etheridge S et al 2017 Exp. Thermal Fluid Sci. 88 461
    [14]
    Driscoll J F and Rasmussen C C 2005 J. Propul. Power 21 1035
    [15]
    Miao J J and Fan Y X 2019 Proc. Inst. Mech. Eng. G 233 5369
    [16]
    Miao J J, Fan Y X and Liu T C 2020 Proc. Inst. Mech. Eng. G 234 1369
    [17]
    Miao J J et al 2020 Aerosp. Sci. Technol. 106 106063
    [18]
    Saito R et al 2011 Mixing enhancement on the afterburner with fuel injection struts for hypersonic vehicle Proc. 17th AIAA Int. Space Planes and Hypersonic Systems and Technologies Conf. (San Francisco) (AIAA)
    [19]
    Huang G et al 2018 J. Spacecr. Rockets 55 660
    [20]
    Wang Y M and Fang X J 2017 Numerical investigation of strut parameters effects on performances of a cavity-based ramjet combustor Proc. 53rd AIAA/SAE/ASEE Joint Propulsion Conf. (Atlanta GA) (AIAA)
    [21]
    Li W B et al 2020 Plasma Sci. Technol. 22 094004
    [22]
    Yu B et al 2020 Plasma Sci. Technol. 22 065505
    [23]
    Wu Z W et al 2020 Plasma Sci. Technol. 22 094014
    [24]
    Pan C X et al 2020 Plasma Sci. Technol. 22 015405
    [25]
    Ju Y G and Sun W T 2015 Prog. Energy Combust. Sci. 48 21
    [26]
    Ju Y G et al 2016 Plasma Chem. Plasma Process. 36 85
    [27]
    Wang N N et al 2018 Int. J. Hydrog. Energy 43 16373
    [28]
    Wang S B et al 2019 Int. J. Turbo Jet-Engines 36 1
    [29]
    Starikovskaia S M et al 2006 J. Phys. D: Appl. Phys.39 R265
    [30]
    Starikovskiy A and Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61
    [31]
    Feng R et al 2018 Aerosp. Sci. Technol. 79 145
    [32]
    Huang G et al 2018 J. Spacecr. Rockets 55 1
    [33]
    Ghodke C et al 2011 Large eddy simulation of supersonic combustion in a cavity-strut flameholder Proc. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Orlando) (AIAA)
    [34]
    Zhang J L et al 2019 Aerosp. Sci. Technol. 84 686
    [35]
    Zhang H L et al 2018 Aerosp. Sci. Technol. 74 56
    [36]
    Qi W T et al 2016 J. Propul. Technol. 37 2107 (in Chinese)
    [37]
    He L M et al 2019 Chin. J. Aeronaut. 32 337
    [38]
    Chen Y et al 2020 Aerosp. Sci. Technol. 99 105765
    [39]
    Qin W L et al 2012 J. Aerosp. Power 27 1347 (in Chinese)
    [40]
    Di D et al 2020 J. Aerosp. Power 35 457 (in Chinese)
  • Related Articles

    [1]Fuqiong WANG, Xiang GU, Jiankun HUA, Yumin WANG, Xiaokun BO, Bo CHEN, Yuejiang SHI, Shuai XU, Erhui WANG, Yunfeng LIANG, the EHL-2 Team. Divertor heat flux challenge and mitigation in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024009. DOI: 10.1088/2058-6272/adadb8
    [2]Chenglong LI, Guizhong ZUO, R MANIGI, K TRITZ, D ANDRUCZYK, Bin ZHANG, Ruirong LIANG, D OLIVER, Zhen SUN, Wei XU, Xiancai MENG, Ming HUANG, Zhongliang TANG, Binfu GAO, Ning YAN, Jiansheng HU. Evidence of vapor shielding effect on heat flux loaded on flowing liquid lithium limiter in EAST[J]. Plasma Science and Technology, 2022, 24(9): 095104. DOI: 10.1088/2058-6272/ac6650
    [3]Bo SHI (史博), Jinhong YANG (杨锦宏), Cheng YANG (杨程), Desheng CHENG (程德胜), Hui WANG (王辉), Hui ZHANG (张辉), Haifei DENG (邓海飞), Junli QI (祁俊力), Xianzu GONG (龚先祖), Weihua WANG (汪卫华). Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST[J]. Plasma Science and Technology, 2018, 20(7): 74006-074006. DOI: 10.1088/2058-6272/aab48e
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15
    [6]TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12
    [7]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [8]GAO Yu(高宇), GAN Kaifu(甘开福), GONG Xianzu(龚先祖), GAO Xiang(高翔), LIANG Yunfeng(梁云峰), EAST Team. Study of Striated Heat Flux on EAST Divertor Plates Induced by LHW Using Infrared Camera[J]. Plasma Science and Technology, 2014, 16(2): 93-98. DOI: 10.1088/1009-0630/16/2/02
    [9]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [10]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07

Catalog

    Article views (316) PDF downloads (291) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return