Citation: | Li FEI (费力), Bingbing ZHAO (赵兵兵), Xiong LIU (刘雄), Liming HE (何立明), Jun DENG (邓俊), Jianping LEI (雷健平), Zichen ZHAO (赵子晨), Zhiyu ZHAO (赵志宇). Application study on plasma ignition in aeroengine strut–cavity–injector integrated afterburner[J]. Plasma Science and Technology, 2021, 23(10): 105504. DOI: 10.1088/2058-6272/ac183c |
[1] |
Sun Y C et al 2011 Aeronaut. Sci. Technol. 04 71 (in Chinese)
|
[2] |
Manikandan S and Sujith R I 2020 Exp. Therm. Fluid Sci. 114 110046
|
[3] |
Huang Y K et al 2021 Energy 216 119142
|
[4] |
Nakaya S et al 2021 Proc. Combust. Inst. 38 5933
|
[5] |
Wang H B et al 2013 Int. J. Hydrog. Energy 38 12078
|
[6] |
Huang W et al 2012 Acta Astronaut. 73 1
|
[7] |
Wang Z G et al 2015 Proc. Combust. Inst. 35 2137
|
[8] |
Yamashita R et al 2021 J. Thermal Sci. Technol. 16 JTST0014
|
[9] |
Feyz M E et al 2019 Comput. Fluids 183 28
|
[10] |
Kang R et al 2021 Proc. Combust. Inst. 38 6493
|
[11] |
Zhao S L and Fan Y X 2019 Aerosp. Sci. Technol. 91 561
|
[12] |
Sun M B et al 2016 Acta Astronaut. 127 112
|
[13] |
Etheridge S et al 2017 Exp. Thermal Fluid Sci. 88 461
|
[14] |
Driscoll J F and Rasmussen C C 2005 J. Propul. Power 21 1035
|
[15] |
Miao J J and Fan Y X 2019 Proc. Inst. Mech. Eng. G 233 5369
|
[16] |
Miao J J, Fan Y X and Liu T C 2020 Proc. Inst. Mech. Eng. G 234 1369
|
[17] |
Miao J J et al 2020 Aerosp. Sci. Technol. 106 106063
|
[18] |
Saito R et al 2011 Mixing enhancement on the afterburner with fuel injection struts for hypersonic vehicle Proc. 17th AIAA Int. Space Planes and Hypersonic Systems and Technologies Conf. (San Francisco) (AIAA)
|
[19] |
Huang G et al 2018 J. Spacecr. Rockets 55 660
|
[20] |
Wang Y M and Fang X J 2017 Numerical investigation of strut parameters effects on performances of a cavity-based ramjet combustor Proc. 53rd AIAA/SAE/ASEE Joint Propulsion Conf. (Atlanta GA) (AIAA)
|
[21] |
Li W B et al 2020 Plasma Sci. Technol. 22 094004
|
[22] |
Yu B et al 2020 Plasma Sci. Technol. 22 065505
|
[23] |
Wu Z W et al 2020 Plasma Sci. Technol. 22 094014
|
[24] |
Pan C X et al 2020 Plasma Sci. Technol. 22 015405
|
[25] |
Ju Y G and Sun W T 2015 Prog. Energy Combust. Sci. 48 21
|
[26] |
Ju Y G et al 2016 Plasma Chem. Plasma Process. 36 85
|
[27] |
Wang N N et al 2018 Int. J. Hydrog. Energy 43 16373
|
[28] |
Wang S B et al 2019 Int. J. Turbo Jet-Engines 36 1
|
[29] |
Starikovskaia S M et al 2006 J. Phys. D: Appl. Phys.39 R265
|
[30] |
Starikovskiy A and Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61
|
[31] |
Feng R et al 2018 Aerosp. Sci. Technol. 79 145
|
[32] |
Huang G et al 2018 J. Spacecr. Rockets 55 1
|
[33] |
Ghodke C et al 2011 Large eddy simulation of supersonic combustion in a cavity-strut flameholder Proc. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Orlando) (AIAA)
|
[34] |
Zhang J L et al 2019 Aerosp. Sci. Technol. 84 686
|
[35] |
Zhang H L et al 2018 Aerosp. Sci. Technol. 74 56
|
[36] |
Qi W T et al 2016 J. Propul. Technol. 37 2107 (in Chinese)
|
[37] |
He L M et al 2019 Chin. J. Aeronaut. 32 337
|
[38] |
Chen Y et al 2020 Aerosp. Sci. Technol. 99 105765
|
[39] |
Qin W L et al 2012 J. Aerosp. Power 27 1347 (in Chinese)
|
[40] |
Di D et al 2020 J. Aerosp. Power 35 457 (in Chinese)
|
[1] | Xinyao CHENG, Huimin SONG, Shengfang HUANG, Yifei ZHU, Zhibo ZHANG, Zhenyang LI, Min JIA. Discharge and jet characteristics of gliding arc plasma igniter driven by pressure difference[J]. Plasma Science and Technology, 2022, 24(11): 115502. DOI: 10.1088/2058-6272/ac7af6 |
[2] | Wenbo LI (李文博), Liqiu WEI (魏立秋), Hong LI (李鸿), Yongjie DING (丁永杰), Jianning SUN (孙建宁), Haikuo CAI (蔡海阔), Daren YU (于达仁), Shangmin WANG (王尚民), Ning GUO (郭宁). Study on the influence of the discharge voltage on the ignition process of Hall thrusters[J]. Plasma Science and Technology, 2020, 22(9): 94004-094004. DOI: 10.1088/2058-6272/ab861c |
[3] | A M EL SHERBINI, M M HAGRASS, M R M RIZK, E A EL-BADAWY. Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths[J]. Plasma Science and Technology, 2019, 21(1): 15502-015502. DOI: 10.1088/2058-6272/aadf7e |
[4] | Xiuquan CAO (曹修全), Deping YU (余德平), Yong XIANG (向勇), Chao LI (李超), Hui JIANG (江汇), Jin YAO (姚进). Study on the ignition process of a segmented plasma torch[J]. Plasma Science and Technology, 2017, 19(7): 75404-075404. DOI: 10.1088/2058-6272/aa62f9 |
[5] | DONG Yunsong (董云松), YANG Jiamin (杨家敏), SONG Tianming (宋天明), ZHU Tuo (朱托), HUANG Chengwu (黄成武). Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition[J]. Plasma Science and Technology, 2016, 18(4): 376-381. DOI: 10.1088/1009-0630/18/4/08 |
[6] | ZHAO Bingbing(赵兵兵), HE Liming(何立明), DU Hongliang(杜宏亮), ZHANG Hualei(张华磊). Electrical Characteristics of an Alternating Current Plasma Igniter in Airflow[J]. Plasma Science and Technology, 2014, 16(4): 370-373. DOI: 10.1088/1009-0630/16/4/12 |
[7] | Mohadeseh MOOSAVI, Abbas GHASEMIZAD, Mohamad Jafar TABATABAEI. Investigation of Fuel Energy Gain for Tritium-Poor Fuels in Fast Ignition Fusion Approach[J]. Plasma Science and Technology, 2013, 15(10): 996-1001. DOI: 10.1088/1009-0630/15/10/07 |
[8] | Asma BEGUM, Mounir LAROUSSI, M. R. PERVEZ. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil[J]. Plasma Science and Technology, 2013, 15(7): 627-634. DOI: 10.1088/1009-0630/15/7/05 |
[9] | Heinrich HORA, George H. MILEY, HE Xiantu, ZHENG Wudi, Paraskevas LALOUSIS, Istvan F?OLDES, Sandor SZATMARI, Stavros MOUSTAIZIS, Reynaldo CASTILLO. Ultrahigh Acceleration of Plasma Blocks by Nonlinear Forces for Side-On Laser Ignition of Solid Density Fusion Fuel[J]. Plasma Science and Technology, 2013, 15(5): 420-424. DOI: 10.1088/1009-0630/15/5/05 |
[10] | M. MAHDAVI, A. GHOLAMI. Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma[J]. Plasma Science and Technology, 2013, 15(4): 323-328. DOI: 10.1088/1009-0630/15/4/04 |