Advanced Search+
Bo SHI (史博), Jinhong YANG (杨锦宏), Cheng YANG (杨程), Desheng CHENG (程德胜), Hui WANG (王辉), Hui ZHANG (张辉), Haifei DENG (邓海飞), Junli QI (祁俊力), Xianzu GONG (龚先祖), Weihua WANG (汪卫华). Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST[J]. Plasma Science and Technology, 2018, 20(7): 74006-074006. DOI: 10.1088/2058-6272/aab48e
Citation: Bo SHI (史博), Jinhong YANG (杨锦宏), Cheng YANG (杨程), Desheng CHENG (程德胜), Hui WANG (王辉), Hui ZHANG (张辉), Haifei DENG (邓海飞), Junli QI (祁俊力), Xianzu GONG (龚先祖), Weihua WANG (汪卫华). Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST[J]. Plasma Science and Technology, 2018, 20(7): 74006-074006. DOI: 10.1088/2058-6272/aab48e

Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST

Funds: This work is supported by National Natural Science Foundation of China (Grant Nos. 11505290, 51576208 and 11575239), and the National Magnetic Confinement Fusion Science Program of China (No. 2015GB102004).
More Information
  • Received Date: December 28, 2017
  • The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916. The real-time feed-back control system for the plasma displacement was employed. Modeling results of the evolution of the poloidal field coil currents, the plasma current, the major radius, the plasma configuration all show agreement with experimental measurements. Results from the simulation show that during disruption, heat flux about 8 MW m−2 flows to the upper divertor target plate and about 6 MW m−2 flows to the lower divertor target plate. Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient. This shows that TSC has high flexibility and predictability.
  • [1]
    Wang B et al 2016 Plasma Sci. Technol. 18 1162
    [2]
    Riccardo V, Loarte A and JET EFDA Contributors 2005 Nucl.Fusion 45 1427
    [3]
    Arnoux G et al 2008 Heat loads on plasma facing components during disruptions on JET Proc. 22nd IAEA Fusion Energy Conf. (Geneva: IAEA)
    [4]
    Riccardo V et al 2002 Plasma Phys. Control. Fusion 44 905
    [5]
    Arnoux G et al 2010 Heat load measurements on the JET first wall during disruptions Proc. 19th Int. Conf. on Plasma Surface Interactions (San Diego, CA: PSI)
    [6]
    Zhuang H D and Zhang X D 2013 Plasma Sci. Technol.15 745
    [7]
    Nakamura Y et al 2010 TSC modelling approach to mimicking the halo current in ASDEX upgrade disruptive discharges Proc. 37th EPS Conf. on Plasma Physics (Geneva:European Physical Society) p 184
    [8]
    Bandyopadhyay I et al 2004 Plasma Phys. Control. Fusion 46 1443
    [9]
    Sayer R O et al 1993 Nucl. Fusion 33 969
    [10]
    Takei N et al 2003 TSC simulation of disruptive current termination on JT-60U reversed shear plasmas Proc. 30th EPS Conf. on Controlled Fusion and Plasma Physics (St Petersburg: EPS) p 127
    [11]
    Liu C Y et al 2010 Plasma Sci. Technol. 12 156
    [12]
    Raman R et al 2011 Nucl. Fusion 51 113018
    [13]
    Jardin S C et al 1987 Nucl. Fusion 27 569
    [14]
    Jardin S C, Bell M G and Pomphrey N 1993 Nucl. Fusion 33 371
    [15]
    Jardin S C et al 2000 Tokamak Simulation code modeling of NSTX Proc. 27th EPS Conf. on Controlled Fusion and Plasma Physics (Budapest: EPS) p 1549
    [16]
    Guo Y et al 2012 Plasma Phys. Control. Fusion 54 0850226
  • Related Articles

    [1]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [2]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [3]LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15
    [4]TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12
    [5]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [6]GAO Yu(高宇), GAN Kaifu(甘开福), GONG Xianzu(龚先祖), GAO Xiang(高翔), LIANG Yunfeng(梁云峰), EAST Team. Study of Striated Heat Flux on EAST Divertor Plates Induced by LHW Using Infrared Camera[J]. Plasma Science and Technology, 2014, 16(2): 93-98. DOI: 10.1088/1009-0630/16/2/02
    [7]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [8]WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02
    [9]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [10]ZHONG Guoqiang, HU Liqun, LI Xiaoling, LIN Shiyao, ZHOU Ruijie. Measurement of Neutron Flux at the Initial Phase of Discharge in EAST[J]. Plasma Science and Technology, 2011, 13(2): 162-166.

Catalog

    Article views (235) PDF downloads (311) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return