Advanced Search+
WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02
Citation: WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02

Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST

Funds: supported by National Magnetic Confinement Fusion Science Program of China (Nos. 2010GB104001, 2009GB106005), and National Natural Science Foundation of China (Nos. 51109112, 11108177, 11105180 and 11075180), partially supportedbytheOpen Foundation of State Key Laboratory of Hydrology-water Resources and Hydraulic Engineering of China (No. 2011490804)
More Information
  • Received Date: December 06, 2011
  • Introducing strong radiative impurities into divertor plasmas has been considered as an important way to mitigate the peak heat load at the divertor target plate for ITER, and will be employed in EAST for high power long pulse operations. To this end, radiative divertor experiments were explored under both low (L) and high (H) - mode confinement regimes, for the first time in EAST, with the injection of argon and its mixture (25% Ar in D 2 ). The Ar injection greatly reduced particle and heat fluxes to the divertor in L-mode discharges, achieving nearly complete detached divertor plasma regimes for both single null (SN) and double null (DN) configurations, without increasing the core impurity content. In particular, the peak heat flux was reduced by a factor of ∼6, significantly reducing the intrinsic in-out divertor asymmetry for DN, as seen by both the new infra-red camera and the Langmuir probes at the divertor target. Promising results have also been obtained in the H-modes with argon seeding, demonstrating a significant increase in the frequency and decrease in the amplitude of the edge localized modes (ELMs), thus reducing both particle and heat loads caused by the ELMs. This will be further explored in the next experimental campaign with increasing heating power for long pulse operations.
  • Related Articles

    [1]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [2]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [3]Liqiu WEI (魏立秋), Wenbo LI (李文博), Yongjie DING (丁永杰), Daren YU (于达仁). Effect of low-frequency oscillation on performance of Hall thrusters[J]. Plasma Science and Technology, 2018, 20(7): 75502-075502. DOI: 10.1088/2058-6272/aabae0
    [4]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79
    [5]FU Qiang (付强), TANG Ying (唐影), ZHAO Jinsong (赵金松), LU Jianyong (吕建永). Low-Frequency Waves in Cold Three-Component Plasmas[J]. Plasma Science and Technology, 2016, 18(9): 897-901. DOI: 10.1088/1009-0630/18/9/04
    [6]WANG Maoyan (王茂琰), ZHANG Meng (张猛), LI Guiping (李桂萍), JIANG Baojun (姜宝钧), ZHANG Xiaochuan (张小川), XU Jun (徐军). FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(8): 798-803. DOI: 10.1088/1009-0630/18/8/02
    [7]ZHANG Liping (张丽萍). The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas[J]. Plasma Science and Technology, 2016, 18(4): 360-363. DOI: 10.1088/1009-0630/18/4/05
    [8]RU Lili(汝丽丽), MENG Yuedong(孟月东), HUANG Jianjun(黄建军), QI Bing(齐冰). On-Line Measurement of Ion Density in Atmospheric Nitrogen Discharge Filaments via Radiation Signals from Plasma Oscillation[J]. Plasma Science and Technology, 2014, 16(5): 448-453. DOI: 10.1088/1009-0630/16/5/02
    [9]WU Zhonghang(吴忠航), LI Zebin(李泽斌), JU Jiaqi(居家奇), HE Kongduo(何孔多), YANG Xilu(杨曦露), YAN Hang(颜航), CHEN Zhenliu(陈枕流), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Experimental Investigation of Surface Wave Plasma Excited by a Cylindrical Dielectric Rod[J]. Plasma Science and Technology, 2014, 16(2): 118-122. DOI: 10.1088/1009-0630/16/2/06
    [10]XI Yanbin (奚衍斌), LIU Yue (刘悦). FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma[J]. Plasma Science and Technology, 2012, 14(1): 5-8. DOI: 10.1088/1009-0630/14/1/02
  • Cited by

    Periodical cited type(14)

    1. Chen, H., Wang, X., Chen, Y. et al. High-sensitivity refractive index sensor based on strong localized surface plasmon resonance. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2024, 41(4): 664-673. DOI:10.1364/JOSAA.517964
    2. Petrov, A.S., Svintsov, D. Viscosity-Limited Drift Instabilities in Two-Dimensional Electron Systems. Physical Review Applied, 2022, 17(5): 054026. DOI:10.1103/PhysRevApplied.17.054026
    3. Zhang, Y., Shur, M.S. P-Diamond, Si, GaN, and InGaAs TeraFETs. IEEE Transactions on Electron Devices, 2020, 67(11): 4858-4865. DOI:10.1109/TED.2020.3027530
    4. Zhang, L., Du, H., Li, D. Effect of viscous electron flow on THz plasma waves in field effect transistors. Chinese Journal of Physics, 2020. DOI:10.1016/j.cjph.2020.07.002
    5. Noei, M., Linn, T., Jungemann, C. A numerical approach to quasi-ballistic transport and plasma oscillations in junctionless nanowire transistors. Journal of Computational Electronics, 2020, 19(3): 975-986. DOI:10.1007/s10825-020-01488-4
    6. Wang, X., Wu, Y., Wen, X. et al. Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure. Optical and Quantum Electronics, 2020, 52(5): 238. DOI:10.1007/s11082-020-02360-2
    7. Li, D., Zhang, L., Su, J. Investigation of the Dyakonov-Shur instability for THz plasma waves in quantum gated cylindrical FET. AIP Advances, 2019, 9(12): 125126. DOI:10.1063/1.5130598
    8. Tong, H., Xu, Y., Su, Y. et al. Theoretical study for fabricating elliptical subwavelength nanohole arrays by higher-order waveguide-mode interference. Results in Physics, 2019. DOI:10.1016/j.rinp.2019.102460
    9. Wang, X., Bai, X., Pang, Z. et al. Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film. Optical Materials Express, 2019, 9(4): 359587. DOI:10.1364/OME.9.001872
    10. Wang, X., Wu, X., Zhu, J. et al. Theoretical investigation of a highly sensitive refractive-index sensor based on TM 0 waveguide mode resonance excited in an asymmetric metal-cladding dielectric waveguide structure. Sensors (Switzerland), 2019, 19(5): 1187. DOI:10.3390/s19051187
    11. Wang, X., Bai, X., Pang, Z. et al. Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube. Results in Physics, 2019. DOI:10.1016/j.rinp.2019.02.002
    12. Wang, X., Tong, H., Pang, Z. et al. Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation. Optical and Quantum Electronics, 2019, 51(2): 38. DOI:10.1007/s11082-019-1759-2
    13. Wang, X., Zhu, J., Wen, X. et al. Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film. Optical Materials Express, 2019, 9(7): 3079-3088. DOI:10.1364/OME.9.003079
    14. Wang, X., Zhu, J., Tong, H. et al. A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer. Chinese Physics B, 2019, 28(4): 044201. DOI:10.1088/1674-1056/28/4/044201

    Other cited types(0)

Catalog

    Article views (234) PDF downloads (1374) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return