Advanced Search+
PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华), LI Xia(李霞). Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude[J]. Plasma Science and Technology, 2012, 14(8): 716-722. DOI: 10.1088/1009-0630/14/8/07
Citation: PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华), LI Xia(李霞). Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude[J]. Plasma Science and Technology, 2012, 14(8): 716-722. DOI: 10.1088/1009-0630/14/8/07

Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude

Funds: supported by the Research Foundation of Education Bureau of Hebei Province, China ( No. 2009308); National Natural Science Foundation of China (No.10805013); the Natural Science Foundation of Hebei Province (No.A2011201132, A2009000149)
More Information
  • Received Date: March 28, 2011
  • A zero-dimensional model which includes 56 species of reactants and 427 reactions is used to study the behavior of charged particles in atmospheric plasmas with different ionization degrees at low altitude (near 0 km). The constant coefficient nonlinear equations are solved by using the Quasi-steady-state approximation method. The electron lifetimes are obtained for afterglow plasma with different initial values, and the temporal evolutions of the main charged species are presented, which are dominant in reaction processes. The results show that the electron number density decays quickly. The lifetimes of electrons are shortened by about two orders with increasing ionization degree. Electrons then attach to neutral particles and produce negative ions. When the initial electron densities are in the range of 1010-1014 cm-3, the negative ions have sufficiently high densities and long lifetimes for air purification, disinfection and sterilization. Electrons, O2-, O4-, CO4- and CO3- are the dominant negative species when the initial electron density ne0≤1013 cm-3, and only an electron and CO3- are left when ne0≥1015 cm-3. N2+, N4+ and O2+ are dominant in the positive charges for any ionization degree. Other positive species, such as O4+, N3+, NO+, NO2+, Ar2+and H3O+•H2O, are dominant only for a certain ionization degree and in a certain period.
  • Related Articles

    [1]Min YANG, Kaixuan QI, Jiuwen YANG, Sa JIA, Haoyan LIU, Yanyang CHEN, Jin LI, Xiaoping LI. The multi-peak point phenomenon of broadband microwave reflection caused by inhomogeneous plasma[J]. Plasma Science and Technology, 2024, 26(7): 075001. DOI: 10.1088/2058-6272/ad34ba
    [2]Yu MA(马宇), Hao ZHANG(张浩), Haifeng ZHANG(章海锋), Ting LIU(刘婷), Wenyu LI(李文煜). Nonreciprocal properties of 1D magnetized plasma photonic crystals with the Fibonacci sequence[J]. Plasma Science and Technology, 2019, 21(1): 15001-015001. DOI: 10.1088/2058-6272/aade85
    [3]Haifeng ZHANG (章海锋), Hao ZHANG (张浩). The features of band structures for woodpile three-dimensional photonic crystals with plasma and function dielectric constituents[J]. Plasma Science and Technology, 2018, 20(10): 105001. DOI: 10.1088/2058-6272/aacf87
    [4]Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8
    [5]LI Yonggao (李永高), ZHOU Yan (周艳), YUAN Baoshan (袁保山), DENG Zhongchao (邓中朝), ZHANG Boyu (张博宇), LI Yuan (李远), DENG Wei (邓玮), WANG Haoxi (王浩西), YI Jiang (易江), HL-A Team. Application of the Magnetic Surface Based PARK-Matrix Method in the HCOOH Laser Interferometry System on HL-2A[J]. Plasma Science and Technology, 2016, 18(12): 1198-1203. DOI: 10.1088/1009-0630/18/12/10
    [6]ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
    [7]QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02
    [8]GUO Bin (郭斌), PENG Li (彭莉), QIU Xiaoming (邱孝明). Tunability of One-Dimensional Plasma Photonic Crystals with an External Magnetic Field[J]. Plasma Science and Technology, 2013, 15(7): 609-613. DOI: 10.1088/1009-0630/15/7/01
    [9]S. PRASAD, Vivek SINGH, A. K. SINGH. Properties of Ternary One Dimensional Plasma Photomic Crystals for an Obliquely Incident Electromagnetic Wave Considering the E®ect of Collisions in Plasma Layers[J]. Plasma Science and Technology, 2012, 14(12): 1084-1090. DOI: 10.1088/1009-0630/14/12/09
    [10]Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396.

Catalog

    Article views (524) PDF downloads (1523) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return