Advanced Search+
HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04
Citation: HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04

Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet

More Information
  • Received Date: September 22, 2012
  • A large magnetized plasma sheet with size of 60 cm×60 cm×2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion.
  • Related Articles

    [1]Shoujie LI, Ronger ZHENG, Yoshihiro DEGUCHI, Wangquan YE, Ye TIAN, Jinjia GUO, Ying LI, Yuan LU. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys[J]. Plasma Science and Technology, 2023, 25(4): 045510. DOI: 10.1088/2058-6272/aca5f4
    [2]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [3]Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1
    [4]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [5]Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce
    [6]Zhiyu YAN (严志宇), Xin WANG (王鑫), Bing SUN (孙冰), Mi WEN (文密), Yue HAN (韩月). Catalytic technology for water treatment by micro arc oxidation on Ti–Al alloy[J]. Plasma Science and Technology, 2017, 19(3): 35501-035501. DOI: 10.1088/2058-6272/19/3/035501
    [7]HE Yongyi (何泳仪), CHEN Li (陈砺), YAN Zongcheng (严京城), ZHANG Yalei (张亚磊). Effects of CH3OH Addition on Plasma Electrolytic Oxidation of AZ31 Magnesium Alloys[J]. Plasma Science and Technology, 2015, 17(9): 761-766. DOI: 10.1088/1009-0630/17/9/07
    [8]LIU Ping (刘平), HAI Ran (海然), WU Ding (吴鼎), XIAO Qingmei (肖青梅), SUN Liying (孙丽影), DING Hongbin (丁洪斌). The Enhanced Effect of Optical Emission from Laser Induced Breakdown Spectroscopy of an Al-Li Alloy in the Presence of Magnetic Field Confinement[J]. Plasma Science and Technology, 2015, 17(8): 687-692. DOI: 10.1088/1009-0630/17/8/13
    [9]QI Lifeng (齐立峰), SUN Lanxiang (孙兰香), XIN Yong (辛勇), CONG Zhibo (丛智博), LI Yang (李洋), YU Haibin (于海斌). Application of Stand-off Double-Pulse Laser-Induced Breakdown Spectroscopy in Elemental Analysis of Magnesium Alloy[J]. Plasma Science and Technology, 2015, 17(8): 676-681. DOI: 10.1088/1009-0630/17/8/11
    [10]JIN Shuoxue (靳硕学), GUO Liping (郭立平), YANG Zheng (杨铮), ZHOU Zhongpo (周忠坡), FU Dejun (付德君), LIU Chuansheng (刘传胜), TANG Rui (唐睿), LIU Feihua (刘飞华), QIAO Yanxin (乔岩欣), et, al. Structural Characterization of Nickel-Base Alloy C-276 Irradiated with Ar Ions[J]. Plasma Science and Technology, 2012, 14(6): 548-552. DOI: 10.1088/1009-0630/14/6/26

Catalog

    Article views (191) PDF downloads (1077) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return