Advanced Search+
Youji SOMEYA, Kenji TOBITA. Estimation of TBR on the Gap Between Neighboring Blanket Modules in the DEMO Reactor[J]. Plasma Science and Technology, 2013, 15(2): 171-174. DOI: 10.1088/1009-0630/15/2/19
Citation: Youji SOMEYA, Kenji TOBITA. Estimation of TBR on the Gap Between Neighboring Blanket Modules in the DEMO Reactor[J]. Plasma Science and Technology, 2013, 15(2): 171-174. DOI: 10.1088/1009-0630/15/2/19

Estimation of TBR on the Gap Between Neighboring Blanket Modules in the DEMO Reactor

More Information
  • Received Date: January 15, 2012
  • When one wants to simply estimate tritium breeding ratio (TBR), the TBR may be reduced from a \local" TBR for the breeding zones of a blanket module by multiplying the breeder coverage (= the surface area of effective breeding region / the surface area of the first wall around plasma). When blanket modules are arranged, the gap between neighboring modules and the frames of the modules are regarded as non-breeding zones. On the other hand, neutrons scattered in the non-breeding zones can enter breeding zones, contributing to tritium production. This means that the estimation method mentioned above tends to underestimate TBR. In order to assess the scattering effect quantitatively, we carried out a three-dimensional Monte Carlo N-particle transport MCNP-5 calculation. It was found from the calculation that there is little decrease in TBR for gaps less than 4 cm when the blanket thickness is 70 cm. The result indicates that such a wide allowance of the gap will facilitate access of remote handling equipment for the replacement of blanket modules and improve access of diagnostics.
  • Related Articles

    [1]Changle LIU, Lei LI, Yanzi HE, Peng ZHANG, Yu ZHOU, Jun SONG, Songtao WU. An innovative approach to effective breeding blanket design for future fusion reactors[J]. Plasma Science and Technology, 2024, 26(10): 105601. DOI: 10.1088/2058-6272/ad5a66
    [2]D AGGARWAL, C DANANI, M Z YOUSSEF. Preliminary performance analysis and optimization based on 1D neutronics model for Indian DEMO HCCB blanket[J]. Plasma Science and Technology, 2020, 22(8): 85602-085602. DOI: 10.1088/2058-6272/ab8e2c
    [3]H L SWAMI, M ABHANGI, Sanchit SHARMA, S TIWARI, A N MISTRY, V VASAVA, V MEHTA, S VALA, C DANANI, V CHAUDHARI, P CHAUDHURI. A neutronic experiment to support the design of an Indian TBM shield module for ITER[J]. Plasma Science and Technology, 2019, 21(6): 65601-065601. DOI: 10.1088/2058-6272/ab079a
    [4]Shuling XU (徐淑玲), Mingzhun LEI (雷明准), Sumei LIU (刘素梅), Kun LU (陆坤), Kun XU (徐坤), Kun PEI (裴坤). Neutronic investigation and activation calculation for CFETR HCCB blankets[J]. Plasma Science and Technology, 2017, 19(12): 125603. DOI: 10.1088/2058-6272/aa8bfe
    [5]Xiaokang ZHANG (张小康), Songlin LIU (刘松林), Xia LI (李夏), Qingjun ZHU (祝庆军), Jia LI (李佳). Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR[J]. Plasma Science and Technology, 2017, 19(11): 115602. DOI: 10.1088/2058-6272/aa808b
    [6]GAO Fangfang (高芳芳), ZHANG Xiaokang (张小康), PU Yong (蒲勇), ZHU Qingjun (祝庆军), LIU Songlin (刘松林). Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(8): 865-869. DOI: 10.1088/1009-0630/18/8/13
    [7]ZHU Qingjun (祝庆军), LI Jia (李佳), LIU Songlin (刘松林). Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(7): 775-780. DOI: 10.1088/1009-0630/18/7/13
    [8]LI Jia (李佳), ZHANG Xiaokang (张小康), GAO Fangfang (高芳芳), PU Yong (蒲勇). Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(2): 179-183. DOI: 10.1088/1009-0630/18/2/14
    [9]LI Xiaoling (李晓玲), WAN Baonian (万宝年), GUO Zhirong (郭智荣), ZHONG Guoqiang (钟国强), HU Liqun (胡立群), LIN Shiyao (林士耀), ZHANG Xinjun (张新军), DING Siye (丁斯晔), LU Bo (吕波). Neutron Yields Based on Transport Calculation in EAST ICRF Minority Heating Plasmas[J]. Plasma Science and Technology, 2013, 15(5): 411-416. DOI: 10.1088/1009-0630/15/5/03
    [10]Mitul ABHANGI, Nupur JAIN, Rajnikant MAKWANA, Sudhirsinh VALA, Shrichand JAKHAR, T. K. BASU, C. V. S. RAO. Experimental Studies on the Self-Shielding E®ect in Fissile Fuel Breeding Measurement in Thorium Oxide Pellets Irradiated with 14 MeV Neutrons[J]. Plasma Science and Technology, 2013, 15(2): 166-170. DOI: 10.1088/1009-0630/15/2/18

Catalog

    Article views (267) PDF downloads (1298) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return