Advanced Search+
Xiaokang ZHANG (张小康), Songlin LIU (刘松林), Xia LI (李夏), Qingjun ZHU (祝庆军), Jia LI (李佳). Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR[J]. Plasma Science and Technology, 2017, 19(11): 115602. DOI: 10.1088/2058-6272/aa808b
Citation: Xiaokang ZHANG (张小康), Songlin LIU (刘松林), Xia LI (李夏), Qingjun ZHU (祝庆军), Jia LI (李佳). Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR[J]. Plasma Science and Technology, 2017, 19(11): 115602. DOI: 10.1088/2058-6272/aa808b

Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

Funds: This work is supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Grant Nos 2013GB108004, 2014GB119000, and 2015BG108002).
More Information
  • Received Date: May 09, 2017
  • The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR). Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage, and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW. The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3. The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.
  • [1]
    Liu S L et al 2014 Fusion Eng. Des. 89 1380
    [2]
    Liu S L et al 2017 Conceptual design of the water cooled ceramic breeder blanket for CFETR based on pressurized water cooled reactor technology Fusion Eng. Des. (In press) (https://doi.org/10.1016/j.fusengdes.2017.02.065)
    [3]
    Wang P H et al 2013 Plasma Sci. Technol. 15 133
    [4]
    Zhu Q J, Li J and Liu S L 2016 Plasma Sci. Technol. 18 775
    [5]
    Zhang X K et al 2016 Plasma Sci. Technol. 18 1130
    [6]
    Gao F F et al 2016 Plasma Sci. Technol. 18 865
    [7]
    Jiang K C et al 2017 Fusion Eng. Des. 114 57
    [8]
    Briemeister J 2000 MCNP: a general Monte Carlo n-particle transport code (Version-4C)Los Alamos, NM: Los Alamos National Laboratory LA-13709-M (http://permalink.lanl. gov/object/tr?what=info:lanl-repo/lareport/LA-13709-M)
    [9]
    Aldama L D and Trkov A 2004 FENDL-2 1: Update of an Evaluated Nuclear Data Library for Fusion Applications (Vienna: International Atomic Energy Agency)
    [10]
    Sublet J C 2013 EASY-II(12): A system for modelling of n, d, p activation and transmutation processes, shielding aspects of accelerators, targets and irradiation facilities–SATIF-11 (ftp://ftp.nrg.eu/pub/www/talys/bib_koning/2013_ Sublet_EASY_SATIF.pdf)
    [11]
    Sublet J C, Eastwood J W and Morgan J G 2012 The FISPACT-II user manual CCFE-R 11
    [12]
    Gilbert M R et al 2013 J. Nucl. Mater. 442 S755
    [13]
    Rochman D and Koning A 2012 TENDL-2011: TALYS–based evaluated nuclear data library PHYSOR 2012: Conf. on Advances in Reactor Physics: Linking Research, Industry, and Education (Knoxville, TN: American Nuclear Society) (ftp://ftp.nrg.eu/pub/www/talys/bib_koning/2012_ Rochman_TENDL2011_PHYSOR.pdf)
    [14]
    Forrest R A 2007 The European Activation File: EAF-2007 Decay Data Library (Abingdon: EURATOM/UKAEA Fusion Association Culham Science Centre)(http://www. ccfe.ac.uk/assets/documents/ukaea-fus-537.pdf)
    [15]
    Sublet J C et al 2010 The European Activation File: EAF-2010 neutron-induced cross-section library (Abingdon: EURATOM/ CCFE Fusion Association Culham Science Centre)
    [16]
    Fausser C et al 2012 Fusion Eng. Des. 87 787
    [17]
    Gilbert M R et al 2012 Nucl. Fusion 52 083019
    [18]
    Pampin R, Massaut V and Taylor N P 2007 Nucl. Fusion 47 S469
  • Related Articles

    [1]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [2]Liuxiu HE (何柳秀), Minghai LIU (刘明海), Shuangyun ZHAO (赵双云). Spontaneous magnetic field multipolar structure in toroidal plasmas based on 2D equilibrium[J]. Plasma Science and Technology, 2019, 21(4): 45101-045101. DOI: 10.1088/2058-6272/aaf78d
    [3]Yafeng BAI (白亚锋), Shiyi ZHOU (周诗怡), Yushan ZENG (曾雨珊), Yihan LIANG (梁亦寒), Rong QI (齐荣), Wentao LI (李文涛), Ye TIAN(田野), Xiaoya LI (李晓亚), Jiansheng LIU (刘建胜). Optical measurements and analytical modeling of magnetic field generated in a dieletric target[J]. Plasma Science and Technology, 2018, 20(1): 14010-014010. DOI: 10.1088/2058-6272/aa8c6f
    [4]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [5]Y WANG (王宇), G ZHAO (赵高), C NIU (牛晨), Z W LIU (刘忠伟), J T OUYANG (欧阳吉庭), Q CHEN (陈强). Reversal of radial glow distribution in helicon plasma induced by reversed magnetic field[J]. Plasma Science and Technology, 2017, 19(2): 24003-024003. DOI: 10.1088/2058-6272/19/2/024003
    [6]WU Ding (吴鼎), LIU Ping (刘平), SUN Liying (孙立影), HAI Ran (海然), DING Hongbin (丁洪斌). Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air[J]. Plasma Science and Technology, 2016, 18(4): 364-369. DOI: 10.1088/1009-0630/18/4/06
    [7]LIU Huiping(刘惠平), ZOU Xiu(邹秀), QIU Minghui(邱明辉). Sheath Criterion for an Electronegative Plasma Sheath in an Oblique Magnetic Field[J]. Plasma Science and Technology, 2014, 16(7): 633-636. DOI: 10.1088/1009-0630/16/7/01
    [8]XIA Zhiwei(夏志伟), LI Wei(李伟), LI Bo(李波), YANG Qingwei(杨青巍), LU Jie(卢杰). High Magnetic Field Shielding for Sensitive Devices Relevant to ITER[J]. Plasma Science and Technology, 2014, 16(6): 629-632. DOI: 10.1088/1009-0630/16/6/17
    [9]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [10]YUAN Zhongcai(袁忠才), SHI Jiaming (时家明), HUANG Yong (黄勇), XU Bo (许波). Faraday angle of Linearly Polarized Waves along Magnetic Field in Magnetized Collisional Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 519-522.

Catalog

    Article views (291) PDF downloads (640) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return