Advanced Search+
LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
Citation: LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17

Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment

Funds: supported by National Natural Science Foundation of China (Nos.11005021, 51177017 and 11175049), the Fudan University Excellent Doctoral Research Program (985 Project) and the Ph.D Programs Foundation of Ministry of Education of China (No.20120071110031)
More Information
  • Received Date: August 29, 2013
  • Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the effect of treatment. The results of KP measurement show that the surface work function of AZO thin films can increase up to 5.92 eV after oxygen ICP (O-ICP)’s treatment, which means that the work function was increased by at least 1.1 eV. However, after the treatment of chlorine ICP (Cl-ICP), the work function increased to 5.44 eV, and the increment was 0.6 eV. And 10 days later, the work function increment was still 0.4 eV after O-ICP’s treatment, while the work function after Cl-ICP’s treatment came back to the original value only after 48 hours. The XPS results suggested that the O-ICP treatment was more effective than Cl-ICP for enhancing the work function of AZO films, which is well consistent with KP results.
  • 1 Tang C W, Vanslyke S A. 1987, Appl. Phys. Lett., 51:913;
    2 Zhao L, Zhou Z, Peng H, et al. 2005, Appl. Surf. Sci.,252: 385;
    3 Bernede J C. 2008, J. Chil. Chem. Soc., 53: 1549;
    4 Kamtekar K T, Monkman A P, Bryce M R. 2010, Adv.Mater., 22: 572;
    5 Kim H, Pique A, Horwitz J S, et al. 1999, Appl. Phys.Lett., 74: 3444;
    6 Reddy V S, Das K, Dhar A, et al. 2006, Semicond. Sci.Technol., 21: 1747;
    7 Tuna O, Selamet Y, Aygun G, et al. 2010, J. Phys. D:Appl. Phys., 43: 055402;
    8 Lee S T, Gao Z Q, Hung L S. 1999, Appl. Phys. Lett.,75: 1404;
    9 Jo S J, Kim C S, Ryu S Y, et al. 2008, J. Appl. Phys.,103: 114502;
    10 Jiang X,Wong F L, Fung M K, et al. 2003, Appl. Phys.Lett., 83: 1875;
    11 Kim H, Horwitz J S, Kim W H, et al. 2002, Thin Solid Films, 420-421: 539;
    12 Kim T W, Choo D C, No Y S, et al. 2006, Appl. Surf.Sci., 253: 1917;
    13 Hotchkiss P J, Li H, Paramonov P B, et al. 2009, Adv.Mater., 21: 4496;
    14 Cattin L, Dahou F, Lare Y, et al. 2009, J. Appl. Phys.,105: 034507;
    15 Hong S J, Heo G S, Park J W, et al. 2007, J. Nanosci.Nanotechnol., 7: 4077;
    16 Wang W, Feng Q, Jiang K, et al. 2011, Appl. Surf.Sci., 257: 3884;
    17 Feng Q, Wang W, Jiang K, et al. 2012, J. Mater. Sci.:Mater. Electron, 23: 267;
    18 Park J H, Ahn K J, Park K I, et al. 2010, J. Phys. D:Appl. Phys., 43: 115101;
    19 Helander M G, Wang Z B, Qiu J, et al. 2011, Science,332: 944 20 Cao X A, Zhang Y Q. 2012, Appl. Phys. Lett., 100:183304;
    21 Yu H Y, Feng X D, Grozea D, et al. 2001, Appl. Phys.Lett., 78: 2595;
    22 Li W, Li D Y. 2005, J. Chem. Phys., 122: 064708 23 Song G L, Haddad D. 2011, Mater. Chem. Phys., 125:548;
    24 Xue M S, Wu H N, Qu J F, et al. 2012, J. Appl. Phys.,111: 123714
  • Related Articles

    [1]Haiyun TAN, Tianyuan HUANG, Peiyu JI, Lanjian ZHUGE, Xuemei WU. Simulation study on electron heating characteristics in magnetic enhancement capacitively coupled plasmas with a longitudinal magnetic field[J]. Plasma Science and Technology, 2022, 24(10): 105403. DOI: 10.1088/2058-6272/ac7385
    [2]Xianhai PANG (庞先海), Zixi LIU (刘紫熹), Shixin XIU (修士新), Dingyu FENG (冯顶瑜). Arc characteristics during the instability stage on transverse magnetic field contacts[J]. Plasma Science and Technology, 2018, 20(9): 95505-095505. DOI: 10.1088/2058-6272/aac50a
    [3]Zhiyu YAN (严志宇), Xin WANG (王鑫), Bing SUN (孙冰), Mi WEN (文密), Yue HAN (韩月). Catalytic technology for water treatment by micro arc oxidation on Ti–Al alloy[J]. Plasma Science and Technology, 2017, 19(3): 35501-035501. DOI: 10.1088/2058-6272/19/3/035501
    [4]FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02
    [5]Joseph-Marie PLEWA, Olivier DUCASSE, Philippe DESSANTE, Carolyn JACOBS, Olivier EICHWALD, Nicolas RENON, Mohammed YOUSFI. Benchmarks of 3D Laplace Equation Solvers in a Cubic Configuration for Streamer Simulation[J]. Plasma Science and Technology, 2016, 18(5): 538-543. DOI: 10.1088/1009-0630/18/5/16
    [6]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation[J]. Plasma Science and Technology, 2016, 18(3): 319-324. DOI: 10.1088/1009-0630/18/3/17
    [7]WU Yifei (吴益飞), REN Zhigang (任志刚), FENG Ying (冯英), LI Mei (李美), ZHANG Hantian (张含天). Analysis of Fault Arc in High-Speed Switch Applied in Hybrid Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 299-304. DOI: 10.1088/1009-0630/18/3/14
    [8]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [9]WANG Lijun (王立军), YANG Dingge (杨鼎革), JIA Shenli (贾申利), WANG Liuhuo (王流火), SHI Zongqian (史宗谦). Vacuum Arc Characteristics Simulation at Different Moments Under Power-Frequency Current[J]. Plasma Science and Technology, 2012, 14(3): 227-234. DOI: 10.1088/1009-0630/14/3/08
    [10]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07

Catalog

    Article views (836) PDF downloads (1918) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return