Processing math: 0%
Advanced Search+
MENG Guodong (孟国栋), CHENG Yonghong (成永红), DONG Chengye (董承业), WU Kai (吴锴). Experimental Study on Electrical Breakdown for Devices with Micrometer Gaps[J]. Plasma Science and Technology, 2014, 16(12): 1083-1089. DOI: 10.1088/1009-0630/16/12/01
Citation: MENG Guodong (孟国栋), CHENG Yonghong (成永红), DONG Chengye (董承业), WU Kai (吴锴). Experimental Study on Electrical Breakdown for Devices with Micrometer Gaps[J]. Plasma Science and Technology, 2014, 16(12): 1083-1089. DOI: 10.1088/1009-0630/16/12/01

Experimental Study on Electrical Breakdown for Devices with Micrometer Gaps

Funds: supported by Research Funds of State Key Laboratory of Electrical Insulation and Power Equipment (Xi’an Jiaotong University) of China (No. EIPE14107)
More Information
  • Received Date: March 25, 2014
  • The understanding of electrical breakdown in atmospheric air across micrometer gaps is critically important for the insulation design of micro & nano electronic devices. In this paper, planar aluminum electrodes with gaps ranging from 2 µm to 40 µm were fabricated by microelectromechanical system technology. The influence factors including gap width and surface dielectric states were experimentally investigated using the home-built test and measurement system. Results showed that for SiO 2 layers the current sustained at 2-3 nA during most of the pre-breakdown period, and then rose rapidly to 10-30 nA just before breakdown due to field electron emission, followed by the breakdown. The breakdown voltage curves demonstrated three stages: (1) a constantly decreasing region (the gap width d <5 µm), where the field emission effect played an important role just near breakdown, supplying enough initial electrons for the breakdown process; (2) a plateau region with a near constant breakdown potential (5 µm10 µm). And the surface dielectric states including the surface resistivity and secondary electron yield were verified to be related to the propagation of discharge due to the interaction between initial electrons and dielectrics.
  • 1.Shea H R, Gasparyan A, Chan H B, et al. 2004,IEEE Transactions on Device and Materials Reliability, 4: 198
    2. Ono T, Sim D Y, Esashi M. 2000, Journal of Micromechanics andMicroengineering, 10: 445
    3. Strong F, Skinner J L, Tien N C. 2008, Journal of Micromechanics andMicroengineering, 18: 075025
    4. Go D B, Fisher T, Garimella S, et al. 2009, Plasma Sources Science andTechnology, 18: 035004
    5. Boyle W, Kisliuk P. 1955, Physical Review, 97: 255
    6. Germer L H. 1959, Journal of Applied Physics, 30: 46
    7. Slade P G, Taylor E D. 2002, IEEE Transactions on Components andPackaging Technologies, 25: 390
    8. Osmokrovic P, Vujisic M, Stankovic K, et al. 2007, Plasma SourcesScience and Technology, 16: 643
    9. Torres J M, Dhariwal R S. 1999, Microsystem Technologies, 6: 6
    10. Torres J M, Dhariwal R S. 1999, Nanotechnology, 10: 102
    11. Wallash A, Levit L. 2003, Reliability, Testing and Characterization ofMEMS/MOEMS II, 4980: 87
    12. Chen C H, Yeh J A, Wang P J. 2006, Journal of Micromechanics andMicroengineering, 16: 1366
    13. Carazzetti P, Shea H R. 2009, Journal of Micro-Nanolithography MEMS andMOEMS, 8: 031305
    14. Go D B, Fisher T, Garimella S. 2009, Journal of Physics D: AppliedPhysics, 42: 055203
    15. Radmilovicˊ-Radjenovi\acute{\rm c} M, Radjenovic B. 2007, IEEE Transactions onPlasma Science, 35: 1223
    16. Radmilovi-Radjenovic M, Petrovic Z L, Radjenovic B. 2007, FirstInternational Workshop on Nonequilibrium Processes in Plasma Physicsand Studies of Environment, 71: 82
    17. Radmilovi\acute{\rm c}-Radjenovi\acute{\rm c} M, Radjenovi\acute{\rm c} B. 2008, Plasma Sources Science andTechnology, 17: 024005
    18. Venkattraman A, Garg A, Peroulis D, et al. 2012, Applied PhysicsLetters, 100: 083503
    19. Sterling R C, Hughes M D, Mellor C J, et al. 2013, Applied PhysicsLetters, 103: 143504
    20. Xue Z Q, Wu Q D. 1993, Electron emission and electronic energyspectrum. Peking University Press, Beijing (in Chinese)
    21. Fowler R H, Nordheim L. 1928, Proceedings of the Royal Society ofLondon, 119: 173
    22. Zhang L, Ma H Z, Yao N, et al. 2003, Journal of Optoelectronics Laser,14: 779
    23. Semnani A, Venkattraman A, Alexeenko A A, et al. 2013, Applied PhysicsLetters, 102: 174102
    24. Tirumala R, Go D B. 2010, Applied Physics Letters, 97: 151502
    25. de Groot W A, Webster J R, Felnhofer D, et al. 2009, IEEE Transactionson Device and Materials Reliability, 9: 190
    26. Li X X, Jia T Q, Feng D H, et al. 2004, Acta Physica Sinica, 53: 2154
    27. Sudarshan T S, Dougal R A. 1986, IEEE Transactions on ElectricalInsulation, 21: 727
    28. Michalas L, Garg A, Venkattraman A, et al. 2012, MicroelectronicsReliability, 52: 2267
    29. Nakanishi K, Yoshioka A, Arahata Y, et al. 1983, IEEE Transactions onPower Apparatus and Systems, 102: 3919
  • Related Articles

    [1]J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [6]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [7]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [8]HUANG Fupei (黄福培), YANG Chicheng (杨麒正), YE Chao (叶超), GE Shuibing (葛水兵), et al.. Effect of Internal Antenna Coil Power on the Plasma Parameters in 13.56 MHz/60 MHz Dual-Frequency Sputtering[J]. Plasma Science and Technology, 2013, 15(12): 1197-1203. DOI: 10.1088/1009-0630/15/12/07
    [9]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [10]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07

Catalog

    Article views (376) PDF downloads (1484) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return