Advanced Search+
CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04
Citation: CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04

The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges

More Information
  • Received Date: December 30, 2013
  • In this paper, two types of underwater discharges, spark discharge and corona dis- charge, are investigated by optical diagnosis using a high speed framing camera (HSFC) with the framing time within nanoseconds under the same experimental conditions. In order to capture the photographs of streamer propagation, the influence of the randomicity of the pre-breakdown dura- tion is taken into consideration. By increasing the conductivity of water, the randomicity reduces effectively. Experimental results show that, for a spark discharge, the process can be separated into three stages: the generation and propagation of a streamer, the generation and expansion of the discharge channel, and the development and annihilation of the plasma. The streamers do not directly move to the opposite electrode, but form a bush-like figure. With the increase of the number of branches, the velocity of streamer propagation slows down. The trajectory of the initial channel between electrodes is not straight. However, with the channel expanding, its shape transforms into a straight column. For a corona discharge, there are two stages: the generation and propagation of a streamer, and the stagnation and annihilation of the streamer. The initial streamer in a corona discharge is generated later than in a spark discharge. The forms of streamers for both kinds of discharge are similar; however, streamers generated by a corona discharge prop- agate with a slower velocity and the number of branches is less compared with a spark discharge. When the energy injection stops, the luminescence of plasma inside the discharge channel (spark discharge) or streamers (corona discharge) becomes weaker and weaker, and finally disappears.
  • 1. Hofmann J, Weise T H G G. 1997, Pulsed powertechnologies for commercial material reduction and crushingapplications. 11th IEEE Pulsed Power Conference, Baltimore
    2. Coleman A J, Saunders J E, Preston R C, et al. 1987, Ultrason. Med.Biol., 13: 651
    3. Delius M, Jordan M, Eizenhoefer H, et al. 1989, Ultrason. Med.Biol., 14: 689
    4. Locke B R, Sata M, Sunka P, et al. 2006, Ind. Eng. Chem. Res., 45: 882
    5. Winsor N. 1997, Technology Report for United States Navy and MarineCorps, 2000-2035, National Academy Press, Washington D.C.
    6. Weise T H G G, Hofmann J, Loffler M J. 1995, Fragmentation of compositematerials by electrothermally generated pressure pulses. 10th IEEEPulsed Power Conference, Albuquerque
    7. Hamelin M, Kitzinger F, Pronko S, et al. 1993, Hard rock fragmentationwith pulsed power. 9th IEEE Pulsed Power Conference, Albuquerque
    8. Buogo S, Cannelli G B, D'Ottavi E, et al. 1998, Acustica., 84: 1025
    9. Oison A H, Sutton S P. 1993, J. Acoust. Soc. Am., 94: 2226
    10. Jomni F, Aitken F, Denat A. 2000, J. Acoust. Soc. Am., 107: 1203
    11. Sun B, Sato M, Harano A, et al. 1998, J. Electrostat., 43: 115
    12. Vanraes P, Nikiforov A, Leys C. 2012, J. Phys. D: Appl. Phys., 45:245206
    13. Sunka P, Babicky V, Clupek M, et al. 1999, Plasma Sources Sci.Technol., 8: 258
    14. Sun Y H, Zhou Y X, Jin M J, et al. 2005, J. Electrostat., 63: 969
    15. Zhu T Y, Zhang Q G, Shi X Y, et al. 2008, IEEE Trans. Plasma Sci.,36: 237
    16. Wetz D A, Dickens J C. 2006, IEEE Trans. Plasma Sci., 34: 1670
    17. Jones H M, Kunhardt E E. 1995, J. Phys. D: Appl. Phys., 28: 178
  • Related Articles

    [1]J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [6]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [7]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [8]HUANG Fupei (黄福培), YANG Chicheng (杨麒正), YE Chao (叶超), GE Shuibing (葛水兵), et al.. Effect of Internal Antenna Coil Power on the Plasma Parameters in 13.56 MHz/60 MHz Dual-Frequency Sputtering[J]. Plasma Science and Technology, 2013, 15(12): 1197-1203. DOI: 10.1088/1009-0630/15/12/07
    [9]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [10]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07

Catalog

    Article views (354) PDF downloads (974) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return