Advanced Search+
YAN Rong (鄢容), CHEN Junling (陈俊凌), CHEN Longwei (陈龙威), et al.. Cleaning of HT-7 Tokamak Exposed First Mirrors by Radio Frequency Magnetron Sputtering Plasma[J]. Plasma Science and Technology, 2014, 16(12): 1158-1162. DOI: 10.1088/1009-0630/16/12/13
Citation: YAN Rong (鄢容), CHEN Junling (陈俊凌), CHEN Longwei (陈龙威), et al.. Cleaning of HT-7 Tokamak Exposed First Mirrors by Radio Frequency Magnetron Sputtering Plasma[J]. Plasma Science and Technology, 2014, 16(12): 1158-1162. DOI: 10.1088/1009-0630/16/12/13

Cleaning of HT-7 Tokamak Exposed First Mirrors by Radio Frequency Magnetron Sputtering Plasma

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB105003) and National Natural Science Foundation of China (No. 11175205)
More Information
  • Received Date: January 07, 2014
  • The stainless steel (SS) first mirror pre-exposed in the deposition-dominated envi- ronment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.
  • 1.Rubel M, Temmerman G De, Sundelin P, et al.2009, Journal of Nuclear Materials, 390: 1066
    2. Voitsenya V, Costley A E, Bandourko V, et al. 2001, Review of Scientific Instruments, 72: 475
    3. Tang C J, Li R H, Chen J L. 2008, Plasma Science and Technology, 10: 412
    4. Litnovsky A, Rudakov D L, Temmerman G De, et al. 2008, Fusion Engineering and Design, 83: 79
    5. Zhou Y, Gao B Y, Jiao Y M, et al. 2006, Fusion Engineering andDesign, 81: 2823
    6. Zhou Y, Zheng L, Li Y G, et al. 2011, Journal ofNuclear Materials, 415: S1206
    7. Uccello A, Maffini A, Dellasege D, et al. 2013, Fusion Engineering and Design,88: 1347
    8. Hai R, Xiao Q M, Zhang L, et al. 2013, Journal of Nuclear Materials, 436: 118
    9. Ivanova D, Widdowson A, Likonen J, et al. 2013, Journal of Nuclear Materials,438: s1241
    10. Wisse M, Marot L, Eren B, et al. 2013, Fusion Engineering and Design, 88: 388
    11. Litnovsky A, Laengner M, Matveeva M, et al. 2011, Fusion Engineering and Design, 86: 1780
    12. Litnovsky A. 2013, Overview of available mirror cleaningtechniques and status of R{\&}D. Mirror cleaning workshop.Cadarache, France, April 23-24, 2013
    13. Chen J, Yan R, Chen J L. 2012, Plasma Science and Technology, 14: 708
    14. Lipa M, Schunke B, Gil Ch, et al. 2006, Fusion Engineering and Design, 81: 221
    15. Litnovsky A, Matveeva M, Herrmann A, et al. 2013,Nuclear Fusion, 53: 073033
  • Related Articles

    [1]J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [6]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [7]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [8]HUANG Fupei (黄福培), YANG Chicheng (杨麒正), YE Chao (叶超), GE Shuibing (葛水兵), et al.. Effect of Internal Antenna Coil Power on the Plasma Parameters in 13.56 MHz/60 MHz Dual-Frequency Sputtering[J]. Plasma Science and Technology, 2013, 15(12): 1197-1203. DOI: 10.1088/1009-0630/15/12/07
    [9]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [10]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07

Catalog

    Article views (497) PDF downloads (1157) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return