Advanced Search+
DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
Citation: DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13

Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics

Funds: supported by National Natural Science Foundation of China (Nos.11275034, 11175052, 11005025, 10975026, 11375039), Key Project of Science and Technology of Liaoning Province, China (No.2011224007)
More Information
  • Received Date: July 22, 2013
  • The distribution of magnetic field in Hall thruster channel has significant effect on its discharge process and wall plasma sheath characteristics. By creating physical models for the wall sheath region and adopting two-dimensional particle in cell simulation method, this work aims to investigate the effects of magnitude and direction of magnetic field and ion velocity on the plasma sheath characteristics. The simulation results show that magnetic field magnitudes have small impact on the sheath potential and the secondary electron emission coefficient, magnetic azimuth between the magnetic field direction and the channel radial direction is proportional to the absolute value of the sheath potential, but inversely proportional to the secondary electron emission coefficient. With the increase of the ion incident velocity, secondary electron emission coefficient is enhanced, however, electron density number, sheath potential and radial electric field are decreased. When the boundary condition is determined, with an increase of the simulation area radial scale, the sheath potential oscillation is aggravated, and the stability of the sheath is reduced.
  • 1 Zhang T P. 2012, The development and application of electric propulsion technology. Proceeding of the 8th Chinese Electric Propulsion Conference, Beijing, China (in Chinese)
    2 Steven R O, John M S. 2000, Advanced Hall Electric Propulsion for Future In-Space Transportation. 3rd In-ternational Spacecraft Propulsion Conference, Cannes,France
    3 Mao G W, Tang J L. 2009, Spacecraft propulsion sys-tem and its application. Northwestern Polytechnical University Press, Xi'an, China (in Chinese)
    4 Robert S, Jankovsky, David T, et al. 2002, NASA's Hall thruster program. 38th Joint Propulsion Confer-ence and Exhibit, Indianapolis, the United States
    5 Henry W, Brandhorst Jr, Mark J O'Neil, et al. 2002,Acta Astronautica, 51: 57
    6 Raitses Y, Staack D, Keidar M, et al. 2005, Phys. Rep,30: 299
    7 Hatami M M, Niknam A R, Shokri B. 2008, Phys.Plasmas, 15: 053508
    8 Raitses Y, Smirnov A, Staack D, et al. 2006, Phys.Plasmas, 13: 014502
    9 Raitses Y, Kaganovich I D, Khrabrov A, et al. 2011,IEEE Transactions on Plasma Science, 39: 995
    10 Duan P, Li X E P, Qing S W. 2011, Acta Physica Sinica, 60: 125203 (in Chinese)
    11 Lentz, Christopher A. 1993, Transient one dimen-sional numerical simulation of Hall thrusters. 29th Joint Propulsion Conference and Exhibit, Monterey, the United States
    12 Morozov A I, Savel'ev V. 2002, Plasma Physics Rep.,28: 1017
    13 Morozov A I, Savel'ev V. 2004, Plasma Physics Rep., 30: 299
    14 Yu D R, Qing S W, Wang X G, et al. 2013, Acta Phys-ica Sinica, 62: 055202 (in Chinese)
    15 Duan P, Shen H J, Liu J Y, et al. 2011, Journal of Propulsion Technology, 31: 185 (in Chinese)
    16 Duan P, Li X, Shen H J, et al. 2012, Plasma Science and Technology, 14: 1
    17 Zhao X Y, Liu J Y, Duan P, et al. 2012, Journal of Vacuum Science and Technology, 32: 279 (in Chinese)
    18 Qing S W, Yu D R, Wang X G, et al. 2011, Journal of Propulsion Technology, 32: 813 (in Chinese)
    19 Fu Z F, Hu Y Q. 1995, Space Plasma Numerical Simu-lation. Anhui Science & Technology Publishing House,Hefei, China (in Chinese)
    20 Xue Z H. 2009, Secondary electron impact on hall propulsion sheath layer of numerical simulation [Ph.D]. Dalian University of Technology, Dalian (in Chinese)
    21 Liu H. 2009, The numerical simulation of hall thruster electronic movement behavior [Ph.D]. Harbin Indus-trial University, Harbin (in Chinese)
    22 Shao F Q. 2002, Plasma Particle Simulation. Science Press, Beijing, China (in Chinese)
    23 Yu D R, Zhang F K, Li H, et al. 2009, Acta Physica Sinica, 58: 1844 (in Chinese)
  • Related Articles

    [1]Yutong YANG, Yunfeng LIANG, Wei YAN, Shuangbao SHU, Jiankun HUA, Song ZHOU, Qinghu YANG, Jinlong GUO, Ziyang JIN, Wei XIE, the J-TEXT Team. Characteristics of divertor heat flux distribution with an island divertor configuration on the J-TEXT tokamak[J]. Plasma Science and Technology, 2024, 26(12): 125102. DOI: 10.1088/2058-6272/ad6816
    [2]Ruirong LIANG, Xianzu GONG, Bin ZHANG, Zhendong YANG, Manni JIA, Youwen SUN, Qun MA, Jiayuan ZHANG, Yunchan HU, Jinping QIAN, the EAST Team. Study on divertor heat flux under n = 3 and n = 4 resonant magnetic perturbations using infrared thermography diagnostic in EAST[J]. Plasma Science and Technology, 2022, 24(10): 105103. DOI: 10.1088/2058-6272/ac73e6
    [3]Bo SHI (史博), Jinhong YANG (杨锦宏), Cheng YANG (杨程), Desheng CHENG (程德胜), Hui WANG (王辉), Hui ZHANG (张辉), Haifei DENG (邓海飞), Junli QI (祁俊力), Xianzu GONG (龚先祖), Weihua WANG (汪卫华). Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST[J]. Plasma Science and Technology, 2018, 20(7): 74006-074006. DOI: 10.1088/2058-6272/aab48e
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]GAO Jinming (高金明), LI Wei (李伟), LU Jie (卢杰), XIA Zhiwei (夏志伟), YI Ping (易萍), LIU Yi (刘仪), YANG Qingwei (杨青巍), HL-A Team. Infrared Imaging Bolometer for the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 590-594. DOI: 10.1088/1009-0630/18/6/02
    [6]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [7]ZHANG Bin (张斌), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), ZHANG Xiaodong (张晓东), WANG Fumin (王福敏), YANG Zhendong (仰振东), CHEN Meiwen (陈美文), WANG Xiaoqiong (王晓琼), the EAST Team. Study of Divertor Heat Patterns Induced by LHCD L-Mode Plasmas Using an Infra-Red Camera System on EAST[J]. Plasma Science and Technology, 2015, 17(10): 831-836. DOI: 10.1088/1009-0630/17/10/04
    [8]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [9]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [10]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07

Catalog

    Article views (254) PDF downloads (1187) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return