Advanced Search+
PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
Citation: PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09

Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground

Funds: supported by the Research Foundation of Education Bureau of Hebei Province, China (No. Q2012084), National Natural Science Foundation of China (No. 10805013) and Natural Science Foundation of Hebei Province, China (No. A2011201132)
More Information
  • Received Date: July 24, 2013
  • A zero-dimensional model is used to study the processes of physical and chemical reactions in atmospheric plasma with different ionization degrees near the ground (0 km). The temporal evolutions of CO, CO 2 and other main reactants (namely OH and O 2 ), which affect the conversion of CO and CO 2 , are obtained for afterglow plasma with different initial values. The results show that the consumption rate of CO is largest when the initial electron number density ne0 =1012 cm −3, i.e. the ionization degree is 0.000004%. The number density of CO 2 is relatively small when n e0 =10 16 cm −3, i.e. the ionization degree is 0.04%, whereas they are very close under the condition of other ionization degrees. Considering the total number densities of CO and CO 2 and the consumption rate of CO comprehensively, the best condition is n e0 =10 13 cm −3, i.e. the ionization degree is 0.00004% for reducing the densities of CO and CO 2 in the atmospheric plasma. The temporal evolutions of N +, Ar +, CO + and CO + 2 are also shown, and the influences on the temporal evolutions of CO and CO 2 are analyzed with increasing ionization degree.
  • 1.Si Kang. 2010, Light Vehicles, Z4: 47 (in Chinese)
    2.Tikuisis P, Kane D M, Mclellan T M, et al. 1992, J. Appl. Physiol., 72: 1311
    3.National Research Council. 2010, Advancing the Sci-ence of Climate Change. National Academies Press, Washington DC
    4.Heicklen J. 1976, Atmospheric Chemistry. Academic Press, New York
    5.Pundir B P. 2007, Engine Emissions: Pollutant For-mation and Advances in Control Technology. Alpha Science International Limited
    6 Baulch D L, Coc R A, Crutzen P J, et al. 1982, J. Phys. Chem. Ref. Data, 11: 327
    7 Carpenter L J, Clemitshow K C, Burgess R A, et al. 1998, Atmos. Environ., 32: 3353
    8 Calvert J G and Lindberg S E. 2003, Atmos. Environ., 37: 4467
    9 Mauzerall D, Logan J, Jacob D, et al. 1998, J. Geo-phys. Res., 103: 8401
    10 Laj P, Klausen J, Bilde M, et al. 2009, Atmos. Envi-ron., 43: 5351
    11 Buchwitz M, Khlystova I, Bovensmann H, et al. 2007, Atmos. Chem. Phys., 7: 2399
    12 Clerbaux C, Edwards D P, Deeter M, et al. 2008, Geo-phys. Res. Lett., 35: L03817
    13 Petersen A K, Warneke T, Lawrence M G, et al. 2008, Geophys. Res. Lett., 35: L03813
    14 Shindell D T, Faluvegi G, Emmons L K. 2005, J. Geo-phys. Res., 110: D23303
    15 Pang X X, Deng Z C, Jia P Y, et al. 2010, Environ-mental Engineering, 28: 179 (in Chinese)
    16 Ouyang J M, Guo W, Wang L, et al. 2004, Chin. Phys. B, 13: 2174
    17 Ouyang J M, Guo W, Wang L, et al. 2005, Chin. Phys. B, 14: 154
    18 Pang X X, Deng Z C and Dong L F. 2008, Acta. Phys-ica. Sinica, 57: 5081 (in Chinese)
    19 Pang X X, Deng Z C, Jia P Y, et al. 2011, Acta. Phys-ica. Sinica, 60: 125201 (in Chinese)
    20 Pang X X, Deng Z C, Jia P Y, et al. 2012, Plasma Science and Technology, 14: 716
    21.Liu J F, Li J L and Bai Y H. 2000, Research of Envi-ronmental Sciences, 13: 44 (in Chinese)
  • Related Articles

    [1]Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
    [2]SONG Ye (宋晔), WANG Qi (王奇), MENG Yuedong (孟月东). Plasma Syntheses of Carbon Nanotube-Supported Pt-Pd Nanoparticles[J]. Plasma Science and Technology, 2016, 18(4): 438-441. DOI: 10.1088/1009-0630/18/4/18
    [3]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [4]CHE Yao (车垚), ZHOU Jiayong (周家勇), WANG Zuwu (王祖武). Plasma Modification of Activated Carbon Fibers for Adsorption of SO 2[J]. Plasma Science and Technology, 2013, 15(10): 1047-1052. DOI: 10.1088/1009-0630/15/10/16
    [5]Katerina ZAHARIEVA, Gheorghi VISSOKOV, Janis GRABIS, Slavcho RAKOVSKY. Plasma-Chemical Synthesis of Nanosized Powders – Nitrides, Carbides, Oxides, Carbon Nanotubes and Fullerenes[J]. Plasma Science and Technology, 2012, 14(11): 980-995. DOI: 10.1088/1009-0630/14/11/06
    [6]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华), LI Xia(李霞). Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude[J]. Plasma Science and Technology, 2012, 14(8): 716-722. DOI: 10.1088/1009-0630/14/8/07
    [7]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12
    [8]Shigeru MORITA, Motoshi GOTO, Kenichi NAGAOKA, Chunfeng DONG, Hangyu ZHOU, Zhengying CUI, Yunbo DONG, Xiang GAO, Katsumi IDA, Katsunori IKEDA, Osamu KANEKO, Shiyao LIN, Haruhisa NAKANO, Masaki OSAKABE. Improvement of Plasma Performance Using Carbon Pellet Injection in Large Helical Device[J]. Plasma Science and Technology, 2011, 13(3): 290-296.
    [9]WANG Shenggao (王升高), WANG Mingyang (王明洋), Yu Dongdong (余冬冬), ZHANG Wenbo (张文波), DENG Xiaoqing (邓晓清), DU Yu (杜宇), CHENG Lili (程莉莉), WANG Jianhua (汪建华). Integrated carbon nanotubes electrodes in microfluidic chip via MWPCVD[J]. Plasma Science and Technology, 2010, 12(5): 556-560.
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.

Catalog

    Article views (203) PDF downloads (1028) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return