Advanced Search+
PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
Citation: PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09

Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground

Funds: supported by the Research Foundation of Education Bureau of Hebei Province, China (No. Q2012084), National Natural Science Foundation of China (No. 10805013) and Natural Science Foundation of Hebei Province, China (No. A2011201132)
More Information
  • Received Date: July 24, 2013
  • A zero-dimensional model is used to study the processes of physical and chemical reactions in atmospheric plasma with different ionization degrees near the ground (0 km). The temporal evolutions of CO, CO 2 and other main reactants (namely OH and O 2 ), which affect the conversion of CO and CO 2 , are obtained for afterglow plasma with different initial values. The results show that the consumption rate of CO is largest when the initial electron number density ne0 =1012 cm −3, i.e. the ionization degree is 0.000004%. The number density of CO 2 is relatively small when n e0 =10 16 cm −3, i.e. the ionization degree is 0.04%, whereas they are very close under the condition of other ionization degrees. Considering the total number densities of CO and CO 2 and the consumption rate of CO comprehensively, the best condition is n e0 =10 13 cm −3, i.e. the ionization degree is 0.00004% for reducing the densities of CO and CO 2 in the atmospheric plasma. The temporal evolutions of N +, Ar +, CO + and CO + 2 are also shown, and the influences on the temporal evolutions of CO and CO 2 are analyzed with increasing ionization degree.
  • 1.Si Kang. 2010, Light Vehicles, Z4: 47 (in Chinese)
    2.Tikuisis P, Kane D M, Mclellan T M, et al. 1992, J. Appl. Physiol., 72: 1311
    3.National Research Council. 2010, Advancing the Sci-ence of Climate Change. National Academies Press, Washington DC
    4.Heicklen J. 1976, Atmospheric Chemistry. Academic Press, New York
    5.Pundir B P. 2007, Engine Emissions: Pollutant For-mation and Advances in Control Technology. Alpha Science International Limited
    6 Baulch D L, Coc R A, Crutzen P J, et al. 1982, J. Phys. Chem. Ref. Data, 11: 327
    7 Carpenter L J, Clemitshow K C, Burgess R A, et al. 1998, Atmos. Environ., 32: 3353
    8 Calvert J G and Lindberg S E. 2003, Atmos. Environ., 37: 4467
    9 Mauzerall D, Logan J, Jacob D, et al. 1998, J. Geo-phys. Res., 103: 8401
    10 Laj P, Klausen J, Bilde M, et al. 2009, Atmos. Envi-ron., 43: 5351
    11 Buchwitz M, Khlystova I, Bovensmann H, et al. 2007, Atmos. Chem. Phys., 7: 2399
    12 Clerbaux C, Edwards D P, Deeter M, et al. 2008, Geo-phys. Res. Lett., 35: L03817
    13 Petersen A K, Warneke T, Lawrence M G, et al. 2008, Geophys. Res. Lett., 35: L03813
    14 Shindell D T, Faluvegi G, Emmons L K. 2005, J. Geo-phys. Res., 110: D23303
    15 Pang X X, Deng Z C, Jia P Y, et al. 2010, Environ-mental Engineering, 28: 179 (in Chinese)
    16 Ouyang J M, Guo W, Wang L, et al. 2004, Chin. Phys. B, 13: 2174
    17 Ouyang J M, Guo W, Wang L, et al. 2005, Chin. Phys. B, 14: 154
    18 Pang X X, Deng Z C and Dong L F. 2008, Acta. Phys-ica. Sinica, 57: 5081 (in Chinese)
    19 Pang X X, Deng Z C, Jia P Y, et al. 2011, Acta. Phys-ica. Sinica, 60: 125201 (in Chinese)
    20 Pang X X, Deng Z C, Jia P Y, et al. 2012, Plasma Science and Technology, 14: 716
    21.Liu J F, Li J L and Bai Y H. 2000, Research of Envi-ronmental Sciences, 13: 44 (in Chinese)
  • Related Articles

    [1]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [2]Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
    [3]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [6]Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
    [7]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [8]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [9]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [10]Xu Jinzhou(徐金洲), Zhong Ping(钟平), Li Jialing(李嘉灵), Ling Jie (林捷), Diao Ying(刁颖), Zhang Jing(张菁). Characteristics of Coaxial Dielectric Barrier Discharge at an Atmospheric Pressure with a Swirling Gas Argon/Oxygen Mixture for the Surface Modification of Polyester Fiber Cord[J]. Plasma Science and Technology, 2010, 12(5): 601-607.

Catalog

    Article views (203) PDF downloads (1028) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return