Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
Citation:
Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
Citation:
Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
1 Department of Physics, Nanchang University, Nanchang 330031, People’s Republic of China
2 School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023, People’s Republic of China
Funds: This work was financially supported by National Natural Science Foundation of China (NSFC) under Grant No. 11465013, the Natural Science Foundation of Jiangxi Province under Grant Nos. 20151BAB212012?and 20161BAB201013, and in part by the International Science and Technology Cooperation Program of China under Grant No. 2015DFA61800.
In this paper, the influence of voltage rising time on a pulsed-dc helium–air plasma at atmospheric pressure is numerically simulated. Simulation results show that as the voltage rising time increases from 10 ns to 30 ns, there is a decrease in the discharge current, namely 0.052 A when the voltage rising time is 10 ns and 0.038 A when the voltage rising time is 30 ns. Additionally, a shorter voltage rising time results in a faster breakdown, a more rapidly rising current waveform, and a higher breakdown voltage. Furthermore, the basic parameters of the streamer discharge also increase with voltage rise rate, which is ascribed to the fact that more energetic electrons are produced in a shorter voltage rising time. Therefore, a pulsed-dc voltage with a short rising time is desirable for efficient production of nonequilibrium atmospheric pressure plasma discharge.
Li, Y., Ou, Y., Wu, J. et al. Experimental Investigation on Plume Characteristics of PTFE-Filled Carbon, Graphite, Graphene for Laser-Assisted Pulsed Plasma Thruster. Applied Sciences (Switzerland), 2023, 13(16): 9283.
DOI:10.3390/app13169283
2.
Li, Y., Ou, Y., Wu, J. et al. Dynamic simulation on laser-metal interaction in laser ablation propulsion considering moving interface, finite thermal wave transfer, and phase explosion. Acta Astronautica, 2023.
DOI:10.1016/j.actaastro.2023.03.039
3.
Peng, Z., Li, Z., Song, F. et al. Ion Electric Propulsion System Electric Breakdown Problems: Causes, Impacts and Protection Strategies. IEEE Access, 2023.
DOI:10.1109/ACCESS.2023.3312719
4.
Xu, Y., Yang, L., Zhou, D. et al. Experimental study on the dynamics and parameters of nanosecond laser-induced aluminum plasma. Journal of Physics D: Applied Physics, 2022, 55(32): 325201.
DOI:10.1088/1361-6463/ac6a27
5.
Ou, Y., Wu, J., Zhang, Y. et al. A predictive model for macro-performances applied to laser-assisted pulsed plasma thrusters. Physics of Plasmas, 2022, 29(1): 013506.
DOI:10.1063/5.0073678
6.
Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101.
DOI:10.1088/2058-6272/ac22f7