Advanced Search+
CHEN Longwei (陈龙威), MENG Yuedong (孟月东), ZUO Xiao (左潇), REN Zhaoxing (任兆杏), WU Kenan (吴克难), WANG Shuai (王帅). On the Characteristics of Coaxial-Type Microwave Excited Linear Plasma: a Simple Numerical Analysis[J]. Plasma Science and Technology, 2015, 17(5): 372-383. DOI: 10.1088/1009-0630/17/5/04
Citation: CHEN Longwei (陈龙威), MENG Yuedong (孟月东), ZUO Xiao (左潇), REN Zhaoxing (任兆杏), WU Kenan (吴克难), WANG Shuai (王帅). On the Characteristics of Coaxial-Type Microwave Excited Linear Plasma: a Simple Numerical Analysis[J]. Plasma Science and Technology, 2015, 17(5): 372-383. DOI: 10.1088/1009-0630/17/5/04

On the Characteristics of Coaxial-Type Microwave Excited Linear Plasma: a Simple Numerical Analysis

Funds: supported by National Natural Science Foundation of China (Nos. 11205201 and 61205139), and the Scientific Foundation of Ministry of Education of China (No. N130405008)
More Information
  • Received Date: September 02, 2014
  • To unveil the characteristics and available propagation mechanism of coaxial-type microwave excited line-shape plasma, the effects of parameters including microwave power, work- ing pressure, dielectric constant, and external magnetic field on the plasma distribution were numerically investigated by solving a coupled system of Maxwell’s equations and continuity equa- tions. Numerical results indicate that high microwave power, relatively high working pressure, low dielectric constant, and shaped magnetic field profiles will help produce a high-density and uniform plasma source. Exciting both ends by microwave contributed to the high-density and uni- form plasma source as well. Possible mechanisms were analyzed by using the polarization model of low temperature plasma. The generation and propagation processes of the line-shape plasma mainly depend on the interaction of three aspects, i.e. the transmitted part, penetration part and absorptive part of the electromagnetic field. The numerical results were qualitatively consistent with available experimental results from literature. More elaborate descriptions of the three as- pects and corresponding interactions among them need to be investigated further to improve the properties of the line-shape plasma.
  • Related Articles

    [1]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [2]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [3]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [4]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [5]Jianyu FENG (冯建宇), Lifang DONG (董丽芳), Caixia LI (李彩霞), Ying LIU (刘莹), Tian DU (杜天), Fang HAO (郝芳). Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge[J]. Plasma Science and Technology, 2017, 19(5): 55401-055401. DOI: 10.1088/2058-6272/aa594a
    [6]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [7]H. I. A. QAZI, M. SHARIF, S. HUSSAIN, M. A. BADAR, H. AFZAL. Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J]. Plasma Science and Technology, 2013, 15(9): 900-903. DOI: 10.1088/1009-0630/15/9/13
    [8]Imola MOLNAR, Judit PAPP, Alpar SIMON, Sorin Dan ANGHEL. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(6): 535-541. DOI: 10.1088/1009-0630/15/6/09
    [9]N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07
    [10]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06

Catalog

    Article views (376) PDF downloads (1124) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return