Advanced Search+
LIU Jia (刘佳), JIA Yunhai (贾云海), ZHANG Yong (张勇), SUN Nian (孙念). Determination of the Insoluble Aluminum Content in Steel Samples by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 644-648. DOI: 10.1088/1009-0630/17/8/06
Citation: LIU Jia (刘佳), JIA Yunhai (贾云海), ZHANG Yong (张勇), SUN Nian (孙念). Determination of the Insoluble Aluminum Content in Steel Samples by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 644-648. DOI: 10.1088/1009-0630/17/8/06

Determination of the Insoluble Aluminum Content in Steel Samples by Using Laser-Induced Breakdown Spectroscopy

Funds: supported by National Key Scientific Instrument and Equipment Development Project, China (No. 2012YQ20018208)
More Information
  • Received Date: February 07, 2015
  • The insoluble aluminum content in steel samples has a significant influence on the quality of the steel. In this paper, laser-induced breakdown spectroscopy (LIBS) is used to analyze the insoluble aluminum content in steel samples using a scanning mode. The average intensity plus 2.5 standard deviations was iterated and the final iteration value was taken as the threshold that distinguishes soluble and insoluble aluminum, and thus total and soluble aluminum content calibration curves were generated. Using the relevant total and soluble aluminum content calibra?tion curves, the total and soluble aluminum contents in steel samples could be determined. The insoluble aluminum content could be determined by subtracting the soluble aluminum content from the total aluminum content. The insoluble aluminum content of standard samples and pro?cess product samples were determined using the present mathematical model; the results agreed well with the certified reference values. This method could be used to rapidly characterize the insoluble aluminum content in steel samples.
  • 1 Kuss H, Lungen S, Muller G, et al. 2002, Anal.Bioanal. Chem., 374: 1242
    2 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Front. Phys.,9: 419
    3 Yu J, Zheng R E. 2012, Front. Phys., 7: 647
    4 Dong F Z, Chen X L, Wang Q, et al. 2012, Front.Phys., 7: 679
    5 Noll R, Begemann C F, Brunk M, et al. 2014, Spectrochimica Acta Part B: Atomic pectroscopy, 93: 41
    6 Hahn D W, Omenetto N. 2010, Applied Spectroscopy,64: 335A
    7 Russo R E, Mao X, Gonzalez J J, et al. 2013, Anal.Chem., 85: 6162
    8 Wang Z, Li Z L, West L, et al. 2012, Spectrochimica Acta Part B: Atomic Spectroscopy, 68: 58
    9 Chen X L, Dong F Z, Wang Q, et al. 2011, Spectroscopy and Spectral Analysis, 31: 3289
    10 Yin W B, Zhang L, Dong L, et al. 2009, Applied Spectroscopy, 63: 865
    11 Novotn′ y K, Kaiser J, Galiová M, et al. 2008, Spectrochimica Acta Part B: Atomic Spectroscopy, 63:1139
    12 Wang X, Motto-Ros V, Panczer G, et al. 2013, Spectrochimica Acta Part B: Atomic Spectroscopy, 87: 139
    13 Nicolas G, Mateo M P, Pinon V. 2007, J. Anal. At.Spectrom., 22: 1244
    14 Balzer H, Hoehne M, Sturm V, et al. 2005, Spectrochimica Acta Part B: Atomic Spectroscopy, 60:1172
    15 Novotny K, Vaculovic T, Galiova M, et al. 2007, Applied Surface Science, 253: 3834
    16 Ardakani H A, Tavassoli S H. 2010, Spectrochimica Acta Part B: Atomic Spectroscopy, 65: 210
    17 Das D K, McDonald J P, Yalisove S M, et al. 2008,Spectrochimica Acta Part B: Atomic Spectroscopy, 63:27
    18 Vadillo J M, Laserna J J. 2004, Spectrochimica Acta Part B: Atomic Spectroscopy, 59: 147
    19 Bette H, Noll R. 2004, J. Phys. D: Appl. Phys., 37:1281
    20 Yalcm S,¨Orer S, Turan R. 2008, Spectrochimica Acta Part B: Atomic Spectroscopy, 63: 1130
    21 Bigne F B. 2014, Spectrochimica Acta Part B: Atomic Spectroscopy, 96: 21
    22 Karasev A, Inoue R, Suito H. 2001, ISIJ International,41: 757
    23 Vadillo J M, Laserna J J. 2004, Spectrochimica Acta Part B: Atomic Spectroscopy, 59: 147
  • Related Articles

    [1]Qingdong ZENG, Guanghui CHEN, Wenxin LI, Zitao LI, Juhong TONG, Mengtian YUAN, Boyun WANG, Honghua MA, Yang LIU, Lianbo GUO, Huaqing YU. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine[J]. Plasma Science and Technology, 2022, 24(8): 084009. DOI: 10.1088/2058-6272/ac72e3
    [2]Qingdong ZENG (曾庆栋), Guanghui CHEN (陈光辉), Xiangang CHEN (陈献刚), Boyun WANG (王波云), Boyang WAN (万博阳), Mengtian YUAN (袁梦甜), Yang LIU (刘洋), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Rapid online analysis of trace elements in steel using a mobile fiber-optic laser- induced breakdown spectroscopy system[J]. Plasma Science and Technology, 2020, 22(7): 74013-074013. DOI: 10.1088/2058-6272/ab8a0b
    [3]Sungho SHIN, Youngmin MOON, Jaepil LEE, Eunsung KWON, Kyihwan PARK, Sungho JEONG. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis[J]. Plasma Science and Technology, 2020, 22(7): 74011-074011. DOI: 10.1088/2058-6272/ab7d48
    [4]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [5]Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
    [6]Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede
    [7]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [8]KONG Haiyang (孔海洋), SUN Lanxiang (孙兰香), HU Jingtao (胡静涛), XIN Yong (辛勇), CONG Zhibo (丛智博). Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(11): 964-970. DOI: 10.1088/1009-0630/17/11/14
    [9]LIU Jia (刘佳), JIA Yunhai (贾云海), ZHANG Yong (张勇), SUN Nian (孙念). Determination of the Insoluble Aluminum Content in Steel Samples by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 644-648. DOI: 10.1088/1009-0630/17/8/06
    [10]M. L. SHAH, A. K. PULHANI, B. M. SURI, G. P. GUPTA. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 546-551. DOI: 10.1088/1009-0630/15/6/11

Catalog

    Article views (425) PDF downloads (1588) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return