Advanced Search+
LIU Jia (刘佳), JIA Yunhai (贾云海), ZHANG Yong (张勇), SUN Nian (孙念). Determination of the Insoluble Aluminum Content in Steel Samples by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 644-648. DOI: 10.1088/1009-0630/17/8/06
Citation: LIU Jia (刘佳), JIA Yunhai (贾云海), ZHANG Yong (张勇), SUN Nian (孙念). Determination of the Insoluble Aluminum Content in Steel Samples by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 644-648. DOI: 10.1088/1009-0630/17/8/06

Determination of the Insoluble Aluminum Content in Steel Samples by Using Laser-Induced Breakdown Spectroscopy

Funds: supported by National Key Scientific Instrument and Equipment Development Project, China (No. 2012YQ20018208)
More Information
  • Received Date: February 07, 2015
  • The insoluble aluminum content in steel samples has a significant influence on the quality of the steel. In this paper, laser-induced breakdown spectroscopy (LIBS) is used to analyze the insoluble aluminum content in steel samples using a scanning mode. The average intensity plus 2.5 standard deviations was iterated and the final iteration value was taken as the threshold that distinguishes soluble and insoluble aluminum, and thus total and soluble aluminum content calibration curves were generated. Using the relevant total and soluble aluminum content calibra?tion curves, the total and soluble aluminum contents in steel samples could be determined. The insoluble aluminum content could be determined by subtracting the soluble aluminum content from the total aluminum content. The insoluble aluminum content of standard samples and pro?cess product samples were determined using the present mathematical model; the results agreed well with the certified reference values. This method could be used to rapidly characterize the insoluble aluminum content in steel samples.
  • 1 Kuss H, Lungen S, Muller G, et al. 2002, Anal.Bioanal. Chem., 374: 1242
    2 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Front. Phys.,9: 419
    3 Yu J, Zheng R E. 2012, Front. Phys., 7: 647
    4 Dong F Z, Chen X L, Wang Q, et al. 2012, Front.Phys., 7: 679
    5 Noll R, Begemann C F, Brunk M, et al. 2014, Spectrochimica Acta Part B: Atomic pectroscopy, 93: 41
    6 Hahn D W, Omenetto N. 2010, Applied Spectroscopy,64: 335A
    7 Russo R E, Mao X, Gonzalez J J, et al. 2013, Anal.Chem., 85: 6162
    8 Wang Z, Li Z L, West L, et al. 2012, Spectrochimica Acta Part B: Atomic Spectroscopy, 68: 58
    9 Chen X L, Dong F Z, Wang Q, et al. 2011, Spectroscopy and Spectral Analysis, 31: 3289
    10 Yin W B, Zhang L, Dong L, et al. 2009, Applied Spectroscopy, 63: 865
    11 Novotn′ y K, Kaiser J, Galiová M, et al. 2008, Spectrochimica Acta Part B: Atomic Spectroscopy, 63:1139
    12 Wang X, Motto-Ros V, Panczer G, et al. 2013, Spectrochimica Acta Part B: Atomic Spectroscopy, 87: 139
    13 Nicolas G, Mateo M P, Pinon V. 2007, J. Anal. At.Spectrom., 22: 1244
    14 Balzer H, Hoehne M, Sturm V, et al. 2005, Spectrochimica Acta Part B: Atomic Spectroscopy, 60:1172
    15 Novotny K, Vaculovic T, Galiova M, et al. 2007, Applied Surface Science, 253: 3834
    16 Ardakani H A, Tavassoli S H. 2010, Spectrochimica Acta Part B: Atomic Spectroscopy, 65: 210
    17 Das D K, McDonald J P, Yalisove S M, et al. 2008,Spectrochimica Acta Part B: Atomic Spectroscopy, 63:27
    18 Vadillo J M, Laserna J J. 2004, Spectrochimica Acta Part B: Atomic Spectroscopy, 59: 147
    19 Bette H, Noll R. 2004, J. Phys. D: Appl. Phys., 37:1281
    20 Yalcm S,¨Orer S, Turan R. 2008, Spectrochimica Acta Part B: Atomic Spectroscopy, 63: 1130
    21 Bigne F B. 2014, Spectrochimica Acta Part B: Atomic Spectroscopy, 96: 21
    22 Karasev A, Inoue R, Suito H. 2001, ISIJ International,41: 757
    23 Vadillo J M, Laserna J J. 2004, Spectrochimica Acta Part B: Atomic Spectroscopy, 59: 147
  • Related Articles

    [1]Yumin WANG, Kai LI, Zhuo HUANG, Yiliang LIU, Shuyu DAI, Jie ZHANG, Yanqing HUANG, Xiang GU, Yihang ZHAO, Shuai XU, Erhui WANG, Dong GUO, Yuejiang SHI, Huasheng XIE, Yunfeng LIANG, Minsheng LIU, the EHL-2 Team. Predictions of H-mode access and edge pedestal instability in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024005. DOI: 10.1088/2058-6272/ad9f27
    [2]Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b
    [3]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [4]WANG Tengfei (王腾飞), ZANG Qing (臧庆), HAN Xiaofeng (韩效锋), XIAO Shumei (肖树妹), HU Ailan (胡爱兰), ZHAO Junyu (赵君煜). The Research of EAST Pedestal Structure and Preliminary Application[J]. Plasma Science and Technology, 2016, 18(10): 967-973. DOI: 10.1088/1009-0630/18/10/01
    [5]XIA Donghui(夏冬辉), ZHOU Jun(周俊), RAO Jun(饶军), HUANG Mei(黄梅), LU Zhihong(陆志鸿), WANG He(王贺), CHEN Gangyu(陈罡宇), WANG Chao(王超), LU Bo(卢波), ZHUANG Ge(庄革). Design of the Transmission Lines for 140 GHz ECRH System on HL-2A[J]. Plasma Science and Technology, 2014, 16(3): 267-272. DOI: 10.1088/1009-0630/16/3/17
    [6]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [7]GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03
    [8]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [9]Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02
    [10]XU Weidong (徐伟东), XUAN Weimin (宣伟民), YAO Lieying (姚列英), WANG Yingqiao (王英翘). Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A[J]. Plasma Science and Technology, 2012, 14(3): 263-268. DOI: 10.1088/1009-0630/14/3/14

Catalog

    Article views (425) PDF downloads (1588) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return