Advanced Search+
ZHOU Chu (周楚), LIU Adi (刘阿娣), HU Jianqiang (胡建强), WANG Mingyuan (王明远), ZHANG Xiaohui (张小辉), LI Hong (李弘), YU Changxuan (俞昌旋), LIU Wandong (刘万东), LAN Tao (兰涛), XIE Jinlin (谢锦林). Ray Tracing for Doppler Backscattering System in the Experimental Advanced Superconducting Tokamak[J]. Plasma Science and Technology, 2015, 17(9): 728-732. DOI: 10.1088/1009-0630/17/9/02
Citation: ZHOU Chu (周楚), LIU Adi (刘阿娣), HU Jianqiang (胡建强), WANG Mingyuan (王明远), ZHANG Xiaohui (张小辉), LI Hong (李弘), YU Changxuan (俞昌旋), LIU Wandong (刘万东), LAN Tao (兰涛), XIE Jinlin (谢锦林). Ray Tracing for Doppler Backscattering System in the Experimental Advanced Superconducting Tokamak[J]. Plasma Science and Technology, 2015, 17(9): 728-732. DOI: 10.1088/1009-0630/17/9/02

Ray Tracing for Doppler Backscattering System in the Experimental Advanced Superconducting Tokamak

Funds: supported by National Natural Science Foundation of China (Nos. 10990211 and 11105146) and the ITER-CN Project, 973 Program of China (No. 2013GB106002)
More Information
  • Received Date: September 14, 2014
  • The Doppler backscattering system has been widely used for turbulence measure?ments, and the microwave beam will be backscattered near the cut-o? layer when the Brag con?dition is fulfilled. In tokamak, the ray-tracing code is used to obtain the radial position and perpendicular wave number of the scattering layer for turbulence velocity measurement and the WKB (Wentzel-Kramers-Brillouin) approximation should be satisfied for optical propagation. To calculate the backscattering location and wave number at the cut-o? layer only, a single ray tracing in the cross section is enough, while for spatial and wave number resolution calculation, multiple rays reflecting the microwave beam size should be used. Considering the angle between the wave vector and the magnetic field, a three-dimension quasi-optical Gaussian ray tracing is sometimes needed.
  • 1 Zhou Chu, Liu Adi, Zhang Xiaohui, et al. 2013, Review of Scientific Instruments, 84: 103511 2 Troster C. 2008, Deveopment of a flexable Doppler reflectometry system and its application to turbulence characterization in the ASDEX Upgrade tokamak [Ph.D]. Ludwig Maximilian University of Munich,Germany 3 Honore C, Hennequin P, Truc A, et al. 2006, Nuclear Fusion, 46: S809 4 Xu Guosheng, Wan Baonian, Li Jiangang, et al. 2011,Nuclear Fusion, 51: 072001 5 Stix T H. 1992, Waves in Plasmas. Am. Inst. Of Physics. Chap 1, New York 6 Qian Jinping, Wan Baonian, Lao L L, et al. 2009,Plasma Science and Technology, 11: 142 7 Happel T. 2010, Doppler Reflectometry in the TJ-II Stellarator: Design of an Optimized Doppler Reflectometer and its Application to Turbulence and Radial Electric Field Studies [Ph.D]. Universidad Carlos III de Madrid, Getafe 8 Schmitz L, Wang G, Hillesheim J C, et al. 2008, Review of Scientific Instruments, 79: 10F113 9 Hirsch M and Holzhauer E. 2004, Plasma Physics and Controlled Fusion, 46: 593 10 Nowak S and Orefice A. 1994, Physics of Plasmas, 1:1242 11 Nowak S and Orefice A. 1993, Physics Fluids B, 5:1945 12 Weinberg S. 1962, Physics Review, 126: 1899
  • Related Articles

    [1]Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0
    [2]Haochen FAN, Guoqiang LI, Jinping QIAN, Xuexi ZHANG, Xiaohe WU, Yuqi CHU, Xiang ZHU, Hui LIAN, Haiqing LIU, Bo LYU, Yifei JIN, Qing ZANG, Jia HUANG. Kinetic equilibrium reconstruction with internal safety factor profile constraints on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045102. DOI: 10.1088/2058-6272/ad0d48
    [3]Yichao LI, Jia FU, Yao HUANG, Jinping QIAN, Ang TI, Cheonho BAE, Shengyu FU, Jiankang LI, Yongqi GU, Zhengping LUO, Jinseok KO, Yongqing WEI, Dongmei LIU, Bingjia XIAO, Bo LYU, Xianzu GONG, Baonian WAN. Development of an upgraded motional Stark effect diagnostic system on EAST tokamak[J]. Plasma Science and Technology, 2023, 25(4): 045101. DOI: 10.1088/2058-6272/ac9b9e
    [4]Yan CHAO, Wei ZHANG, Liqun HU, Kangning GENG, Liqing XU, Tao ZHANG, Qing ZANG, Tianfu ZHOU. Observations of mode frequency increase and the appearance of ITB during the m/n = 1/1 kink mode in EAST high electron temperature long pulse operation[J]. Plasma Science and Technology, 2023, 25(2): 025107. DOI: 10.1088/2058-6272/ac92d0
    [5]Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602
    [6]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [9]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [10]XU Chao (许超), OU Yongsheng (欧勇盛), Eugenio SCHUSTER, and YU Xin(于欣). Computing Open-Loop Optimal Control of the q-Profile in Ramp-Up Tokamak Plasmas Using the Minimal-Surface Theory[J]. Plasma Science and Technology, 2013, 15(5): 403-410. DOI: 10.1088/1009-0630/15/5/02
  • Cited by

    Periodical cited type(10)

    1. Tao, J., Li, C., Cao, X. et al. Modeling of the Arc Characteristics inside a Thermal Laminar Plasma Torch with Different Gas Components. Processes, 2024, 12(6): 1207. DOI:10.3390/pr12061207
    2. Hu, Y.-H., Sun, S.-R., Meng, X. et al. Experimental study on the life and performance of an improved DC arc plasma torch. Journal of Physics D: Applied Physics, 2024, 57(20): 205206. DOI:10.1088/1361-6463/ad256b
    3. Cao, X., He, Y., Tao, J. et al. Influence of Novel Anode Structure on the Heat Flow Characteristics and Jet Stability of Pure Nitrogen Laminar Torch. Plasma Chemistry and Plasma Processing, 2024. DOI:10.1007/s11090-024-10526-z
    4. Cao, X., Zhang, J., Guo, W. et al. Effects of Gas Components on the Jet Characteristics of a DC Plasma Torch by Using Orthogonal Test Method. IEEE Transactions on Plasma Science, 2024, 52(5): 1685-1698. DOI:10.1109/TPS.2024.3393414
    5. Cao, X., Wang, L., He, R. et al. Characterization of Fe-Based Layers Deposited by Laminar Plasma Cladding on Low-Carbon Steel. Journal of Thermal Spray Technology, 2023, 32(7): 2104-2111. DOI:10.1007/s11666-023-01634-x
    6. Zhang, H.-Y., Deng, S.-J., Liu, S.-H. et al. Study of annular coaxial powder feeding effect on the characteristics of laminar plasma jet and atmospheric cluster deposition. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129604
    7. Cao, X., Guo, W., Hu, G. et al. Design and Experimental Jet Characteristics of an Optimized DC Plasma Torch. IEEE Transactions on Plasma Science, 2022, 50(12): 4873-4881. DOI:10.1109/TPS.2022.3222690
    8. Zhang, H., Mauer, G., Liu, S. et al. Modeling of the Effect of Carrier Gas Injection on the Laminarity of the Plasma Jet Generated by a Cascaded Spray Gun. Coatings, 2022, 12(10): 1416. DOI:10.3390/coatings12101416
    9. Cao, X., He, R., Xu, H. et al. Experimental Study on the Design and Characteristics of an Optimized Thermal Plasma Torch with Two Gas Injections. Plasma Chemistry and Plasma Processing, 2021, 41(4): 1169-1181. DOI:10.1007/s11090-021-10178-3
    10. Cao, X., Li, C., He, R. et al. Study on the influences of the anode structures on the jet characteristics of a laminar plasma torch. Plasma Research Express, 2020, 2(1): 018001. DOI:10.1088/2516-1067/ab6c85

    Other cited types(0)

Catalog

    Article views (415) PDF downloads (899) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return