
Citation: | Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0 |
In a tokamak fusion reactor operated at steady state, the equilibrium magnetic field is likely to have reversed shear in the core region, as the noninductive bootstrap current profile generally peaks off-axis. The reversed shear Alfvén eigenmode (RSAE) as a unique branch of the shear Alfvén wave in this equilibrium, can exist with a broad spectrum in wavenumber and frequency, and be resonantly driven unstable by energetic particles (EP). After briefly discussing the RSAE linear properties in burning plasma condition, we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels, and illustrate their potentially important role in reactor-scale fusion plasmas. By means of simplified hybrid MHD-kinetic simulations, the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP, as results of weak/vanishing magnetic shear and relatively low frequency. Through the route of wave-EP nonlinearity, the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure, and the resultant EP transport generally has a convective feature. The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations. Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory, and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE. Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode, which may effectively transfer the EP energy to fuel ions via collisionless Landau damping. Moreover, zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope, and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.
Energetic particles (EPs) including fusion alpha particles are of crucial importance in magnetically confined fusion plasmas due to their contribution to plasma heating and potentially current drive [1, 2]. A key aspect of EP confinement is related to the shear Alfvén wave (SAW) instabilities [3] resonantly excited by EPs [4–8]. In magnetic confinement devices, SAW can be excited as various EP continuum modes (EPMs) [7] or discrete Alfvén modes (AEs) [9–11] inside the frequency gaps of the SAW continuum induced by equilibrium magnetic geometry and plasma nonuniformity. These SAW instabilities can then induce significant EPs anomalous transport loss across the magnetic surfaces, leading to plasma performance degradation and even damage of plasma facing components [12, 13]. With the EPs transport rate determined by the saturation amplitude and spectrum of SAW instabilities [14, 15], it is crucial to understand the nonlinear dynamics resulting in their saturation. In the past decades, nonlinear saturation of SAW instabilities has been broadly investigated both numerically and theoretically [16–33], among which, one of the most important channel is nonlinear wave-wave coupling [34, 35], i.e. nonlinear spectrum evolution of SAW instabilities due to interacting with other collective electromagnetic oscillations.
In the advanced scenarios of future reactor burning plasmas, a large fraction of non-inductive (e.g. bootstrap) current will be maintained [36] off-axis, and the magnetic shear is reversed in the plasma core region, where large fraction of energetic fusion alpha particles are generated [37]. As a result, a specific Alfvén eigenmode, namely the reversed shear Alfvén eigenmode (RSAE, also known as Alfvén cascade due to its frequency sweeping character [38–41]) could be excited and play important roles in transport of fusion alpha particles. In particular, as multiple-n RSAEs can be strongly driven unstable simultaneously in reactors with machine size being much larger than fusion alpha particle characteristic orbit width, RSAEs can lead to strong alpha particle re-distribution and transport [37, 42]. RSAE is a branch of Alfvén eigenmodes localized around the SAW continuum extremum induced by the local minimum of the safety factor q-profile (labeled as qmin) to minimize the continuum damping, and is characterized by a radial width of ∼q/(r20q″ [41], with r_0 being the radial location of q_{\mathrm{min}} and q^{''}\equiv \partial^2_r q . RSAE was originally observed in the advanced operation experiments in JT-60U tokamak [43], and was then detected in numerous JET discharges [44]. In present day tokamaks, RSAEs are generally excited by large orbit EP during current ramp up stage where reversed shear q -profile is created by insufficient current penetration [45]. In most cases, with q_{\mathrm{min}} decreasing from, e.g., a rational value m/n to (m-1/2)/n , the RSAEs exhibit upward frequency sweeping from beta-induced Alfvén eigenmode (BAE) [46] to the toroidal Alfveń eigenmode (TAE) [9, 11] frequency ranges. Here, m and n stand for the poloidal and toroidal mode numbers, respectively.
Due to the increasing importance in reactor burning plasmas operating at advanced scenarios, RSAE has drawn much attention in recent investigations. For instance, the resonant decay of RSAE into a generic low frequency Alfvén mode (LFAM) was investigated in reference [47], based on which, a potential alpha channelling mechanism [48] via the LFAM Landau damping was also proposed and analyzed. The modulational instability of a finite amplitude RSAE and excitation of the zero-frequency zonal structures were investigated in reference [49], where RSAE was saturated due to the modulation of SAW continuum and scattered into short-radial-wavelength stable domain. In particular, it is pointed out that, the generation of zonal current around the q_{\mathrm{min}} region can be of particular importance, due to the sensitive dependence of RSAE on reversed shear profiles. Further numerical investigations of RSAE nonlinear dynamics can also be found in, e.g., references [50, 51], where RSAE nonlinear saturation due to wave-particle radial decoupling and zonal flow generation were investigated, respectively. It is also noteworthy that, in reference [52], a nonlinear saturation channel of RSAEs via nonlinear harmonic generation was investigated, where quasi-modes with double and/or triple toroidal mode numbers of the primary linearly unstable RSAE were generated due to kinetic electron contribution via “magnetic fluttering”, and led to RSAE nonlinear saturation. The setting of the simulation seems though, to some extend “artificial”, as only few toroidal mode numbers are kept in the simulation, it provides the important information of RSAE dissipation via nonlinear harmonic generation.
Motivated by reference [52], in this work, we present a potential nonlinear saturation mechanism for RSAE via nonlinear quasi-mode generation. This nonlinear mode coupling is achieved through the non-adiabatic responses to electrons, corresponding to the magnetic fluttering nonlinearity as addressed in reference [52]. Meanwhile, the mode coupling is generalized from RSAE self-coupling in the simulation [52] to include also the interaction between two RSAEs with different toroidal mode numbers, for which the nonlinear coupling could be much stronger. Generally, this quasi-mode could experience significant continuum or radiative damping, and provide a channel for primary RSAE energy dissipation. Using nonlinear gyrokinetic theory, the parametric dispersion relation of this nonlinear mode coupling process is derived. Focusing on the continuum damping of the quasi-mode, the resultant nonlinear damping to RSAE is then analyzed and estimated.
The remainder of this paper is arranged as follows. In section 2, the theoretical model is given. In section 3, the nonlinear dispersion relation describing the RSAE nonlinear evolution due to interaction with another background RSAE is derived. It is then used in section 4 to investigate the continuum damping of the quasi-mode. An estimation of the resulting damping to RSAE is also presented.
Considering two co-propagating RSAEs \Omega_0\equiv\Omega_0(\omega_0,{\boldsymbol{k}}_0) and \Omega_1\equiv\Omega_1(\omega_1,{\boldsymbol{k}}_1) coupling and generating a beat wave \Omega_\mathrm{b}\equiv\Omega_\mathrm{b}(\omega_\mathrm{b},{\boldsymbol{k}}_\mathrm{b}) , with the frequency and wavenumber of \Omega_\mathrm{b} determined by the matching condition \Omega_\mathrm{b} = \Omega_0 +\Omega_1 , the beat wave \Omega_\mathrm{b} is likely a high-frequency quasi-mode bearing significant continuum or radiative damping, as it may not satisfy the global RSAE dispersion relation with corresponding toroidal mode number n_\mathrm{b} = n_0+n_1 . Here, for “co-propagating”, we mean the two RSAEs propagate in the same direction along the magnetic field line. This nonlinear coupling provides the primary RSAEs an indirect damping mechanism, and may result in their saturation. Here, for simplicity of the discussion while focusing on the main physics picture, we focus on the continuum damping of the quasi-mode, and investigate the resultant nonlinear saturation of primary RSAEs. A sketched illustration of the proposed process is given in figure 1, where two RSAEs with n=3,\ 4 couple and generate an n = 7 high-frequency quasi-mode, which can be heavily damped due to coupling with the corresponding shear Alfvén continuum.
The nonlinear coupling of the two RSAEs and the resultant damping are investigated in a uniform low- \beta magnetized plasma using the standard nonlinear perturbation theory, with \beta\ll1 being the ratio between plasma and magnetic pressures. Here, for “uniform”, we mean the effects associated with diamagnetic effects are systematically neglected, while noting magnetically confined plasma is intrinsically nonuniform. Introducing the scalar potential \delta\phi and parallel component of vector potential \delta A_\parallel as the perturbed field variables, one then has \delta\phi = \delta\phi_0+\delta\phi_1+\delta\phi_\mathrm{b} with the subscripts 0 , 1 and \mathrm{b} denoting \Omega_0 , \Omega_1 and \Omega_\mathrm{b} , respectively. For convenience of investigation, \delta A_\parallel is replaced by \delta\psi\equiv \omega\delta A_\parallel/(ck_\parallel) , such that \delta\phi = \delta\psi can straightforwardly recover the ideal MHD limit, i.e. vanishing parallel electric field fluctuation \delta E_\parallel . Both electrons and ions are chacterised by Maxwellian equilibrium distributions F_\mathrm{M} .
For RSAEs typically dominated by single- n and single- m mode structures near q_{\mathrm{min}} , we take
\delta\phi_k = A_k(t) \Phi_k(x) \exp(-\mathrm{i}\omega_kt+\mathrm{i}n\xi-\mathrm{i}m\theta), |
with A_k(t) being the slowly varying mode amplitude, \Phi_k(x) being the parallel mode structure localized around q_{\mathrm{min}} with x\equiv nq-m , and the normalization \int |\Phi_k|^2\mathrm{d}x = 1 can be adopted.
Nonlinear mode equations can be derived from charge quasi-neutrality condition
\frac{N_0e^2}{T_\mathrm{i}}\left(1+\frac{T_\mathrm{i}}{T_\mathrm{e}}\right)\delta\phi_k = \sum\limits_{j = \mathrm{e},\mathrm{i}}\langle qJ_k\delta H_k\rangle_j, | (1) |
and nonlinear gyrokinetic vorticity equation [53]
\begin{split}& \frac{c^2}{4 {\text{π}}\omega_k^2}B\frac{\partial}{\partial l}\frac{k^2_\bot}{B}\frac{\partial}{\partial l}\delta\psi_k+\frac{e^2}{T_\mathrm{i}} \langle(1-J_k^2)F_\mathrm{M}\rangle\delta\phi_k -\sum\limits_{j = \mathrm{e},\mathrm{i}}\left \langle qJ_k\frac{\omega_\mathrm{d}}{\omega_k}\delta H_k\right \rangle_j \\ &= -\frac{\mathrm{i}}{\omega_k}\sum\limits_{{\boldsymbol{k}} = {\boldsymbol{k}}'+{\boldsymbol{k}}''}\Lambda_{k''}^{k'}{\Bigg [}\langle e(J_k J_{k'}-J_{k''})\delta L_{k'}\delta H_{k''}\rangle \\& \;\;\;\;\;\; +\frac{c^2}{4 {\text{π}}}k^{''2}_\bot\frac{\partial_l\delta\psi_{k'}\partial_l\delta\psi_{k''}}{\omega_{k'}\omega_{k''}}{\Bigg ]}. \end{split} | (2) |
Here, the terms on the left hand side of equation (2) are field line bending, inertia and curvature-pressure coupling terms, respectively, whereas the terms on the right hand side represent Reynolds and Maxwell stresses dominating in short wavelength limit. N_0 is the equilibrium particle density, q_j is the electric charge, the angular brackets \langle \dots\rangle denote velocity space integration, \partial_l is the spatial derivative along the equilibrium magnetic field, k_\bot = \sqrt{k^2_r+k^2_{\theta}} is the perpendicular wavenumber, J_k\equiv J_0(k_\bot \rho) with J_0 being the Bessel function of zero index accounting for finite Larmor radius effects, and \rho = v_\bot/\Omega_\mathrm{c} is the Larmor radius with \Omega_\mathrm{c} being the cyclotron frequency. Furthermore, \omega_\mathrm{d} = (v^2_\bot+2v^2_\parallel)/ (2\Omega_\mathrm{c}R_0)(k_r \sin\theta+k_\theta\cos\theta) is the magnetic drift frequency, \Lambda_{k''}^{k'} = (c/B_0){\hat{\boldsymbol{b}}}\cdot{\boldsymbol{ k}}''\times {\boldsymbol{k}}' accounts for perpendicular coupling with the constraint of frequency and wavevector matching conditions, and \delta L_k\equiv\delta \phi_k-k_\parallel v_\parallel\delta\psi_k/\omega_k is the scalar potential in the frame moving with guiding center. The non-adiabatic particle response \delta H_k is derived from the nonlinear gyrokinetic equation [54]:
\begin{split} & (-\mathrm{i}\omega+v_{\parallel}\partial_l+\mathrm{i}\omega_{\mathrm{d}})\delta H_k \\ &=-\mathrm{i}\frac{q}{T_j}\omega_kF_{\mathrm{M}}J_k\delta Lk-\sum\limits_{\boldsymbol{k}=\boldsymbol{k}'+\boldsymbol{k}''}^{ }\Lambda_{k''}^{k'}J_{k'}\delta L_{k'}\delta H_{k''}. \end{split} | (3) |
In this section, the coupled nonlinear equations for RSAE and the high-frequency quasi-mode are derived in sections 3.1 and 3.2, which are then combined and give the parametric dispersion relation in section 3.3.
The nonlinear equation for quasi-mode \Omega_\mathrm{b} generation can be derived from the quasi-neutrality condition and the nonlinear gyrokinetic vorticity equation. The nonlinear non-adiabatic particle response of \Omega_\mathrm{b} can be derived from the nonlinear component of equation (3) noting the k_\parallel v_\mathrm{e}\gg\omega\gg k_\parallel v_\mathrm{i}\gtrsim\omega_\mathrm{d} ordering, and one obtains
\delta H_{\mathrm{bi}}^{\mathrm{NL}} = 0, | (4) |
\delta H_{\mathrm{be}}^{\mathrm{NL}} = \mathrm{i}\Lambda_0^1 \frac{e}{T_\mathrm{e}}F_\mathrm{M} \frac{1}{k_{\parallel \mathrm{b}}}\left(\frac{k_{\parallel 1}}{\omega_1}-\frac{k_{\parallel 0}}{\omega_0}\right)\delta\psi_0\delta\psi_1. | (5) |
In deriving equations (4) and (5), the linear particle responses \delta H_{k\mathrm{i}}^\mathrm{L} = (e/T_\mathrm{i})F_{\mathrm{M}}J_k\delta\phi_k and \delta H_{k\mathrm{e}}^\mathrm{L} = -(e/T_\mathrm{e})F_{\mathrm{M}}\delta\psi_k are used (interested readers may refer to the Appendix for the detailed derivation). With \delta H_{\mathrm{be}}^{\mathrm{NL}} representing the coupling between \Omega_0 and \Omega_1 due to nonlinear electron contribution, it corresponds to the magnetic fluttering nonlinearity investigated in [52]. Substituting equations (4) and (5) into the quasi-neutrality condition, one obtains
\delta\psi_{\mathrm{b}}=\delta\phi_{\mathrm{b}}+\mathrm{i}\Lambda_0^1\frac{1}{k_{\parallel\mathrm{b}}}\left(\frac{k_{\parallel1}}{\omega_1}-\frac{k_{\parallel0}}{\omega_0}\right)\delta\psi_0\delta\psi_1, | (6) |
i.e. breaking of ideal MHD constraint due to nonlinear mode coupling, while finite parallel electric field associated with linear FLR effects is not included here for simplicity [55]. This is also consistent with the b_k\ll1 ordering for linear unstable RSAEs with typically k^{-1}_{\perp} comparable to EP characteristic orbit width. Substituting the particle responses into the nonlinear gyrokinetic vorticity equation, one obtains
\begin{split} & b_{\mathrm{b}}\left(\delta\phi_{\mathrm{b}}-\frac{k_{\parallel\mathrm{b}}^2v_{\mathrm{A}}^2}{\omega_{\mathrm{b}}^2}\delta\psi_{\mathrm{b}}-\frac{\omega_{\mathrm{G}}^2}{\omega_{\mathrm{b}}^2}\delta\phi_{\mathrm{b}}\right) \\ &\qquad=-\mathrm{i}\frac{\Lambda_0^1}{\omega_{\mathrm{b}}}(b_0-b_1)\left(1-\frac{k_{\parallel0}k_{\parallel1}v_{\mathrm{A}}^2}{\omega_0\omega_1}\right)\delta\phi_0\delta\phi_1, \end{split} | (7) |
with b_k = k_\bot^2\rho_\mathrm{i}^2/2 , v_\mathrm{A} being the Alfvén speed, \omega_\mathrm{G}\equiv \sqrt{7/4+\tau}v_\mathrm{i}/R_0 being the leading order geodesic acoustic mode frequency [56, 57] and \tau\equiv T_\mathrm{e}/T_\mathrm{i} . Combining equations (6) and (7), one obtains
b_\mathrm{b} \varepsilon_{\mathrm{Ab}}\delta\phi_\mathrm{b} = \mathrm{i}\frac{\Lambda_0^1}{\omega_\mathrm{b}}\beta_\mathrm{b}\delta\phi_0\delta\phi_1. | (8) |
Equation (8) is the desired nonlinear equation describing the high-frequency quasi-mode \Omega_\mathrm{b} generation due to \Omega_0 and \Omega_1 coupling, with the \Omega_\mathrm{b} dielectric function \varepsilon_{\mathrm{Ab}} defined as
\varepsilon_{\mathrm{Ab}}\equiv 1-\frac{k_{\parallel \mathrm{b}}^2v_\mathrm{A}^2}{\omega_\mathrm{b}^2}-\frac{\omega_\mathrm{G}^2}{\omega_\mathrm{b}^2}, |
and the nonlinear coupling coefficient \beta_\mathrm{b} given by
\beta_\mathrm{b} =b_\mathrm{b} \frac{k_{\parallel \mathrm{b}}v_\mathrm{A}}{\omega_\mathrm{b}}\left(\frac{k_{\parallel 1}v_\mathrm{A}}{\omega_1}-\frac{k_{\parallel 0}v_\mathrm{A}}{\omega_0}\right) \nonumber -(b_0-b_1)\left(1-\frac{k_{\parallel 0}k_{\parallel 1}v^2_\mathrm{A}}{\omega_0\omega_1}\right). |
It is worth mentioning that, the \Omega_\mathrm{b} dielectric function, \varepsilon_{\mathrm{Ab}} , may not satisfy the global linear RSAE dispersion relation for toroidal mode number n_\mathrm{b} , and \Omega_\mathrm{b} could be a quasi-mode experiencing heavy damping, leading to the dissipation of both itself and the primary RSAEs, as shown later.
The nonlinear coupling equation for the test RSAE \Omega_0 can be derived following a similar procedure. However, noting that \Omega_\mathrm{b} is a quasi-mode, one needs to keep both the linear and nonlinear particle responses since they could be of the same order. The resultant nonlinear non-adiabatic particle responses of \Omega_0 are respectively
\delta H_{0\mathrm{i}}^{\mathrm{NL}} = 0, | (9) |
\begin{split} \delta H_{0\mathrm{e}}^{\mathrm{NL}} =\;& -\mathrm{i}\Lambda_0^1 \frac{e}{T_\mathrm{e}}F_\mathrm{M} \frac{1}{k_{\parallel 0}}\left(\frac{k_{\parallel 1}}{\omega_1}-\frac{k_{\parallel \mathrm{b}}}{\omega_\mathrm{b}}\right)\delta\psi_1^{*}\delta\psi_\mathrm{b} \\& -(\Lambda_0^1)^2\frac{e}{T_\mathrm{e}}F_\mathrm{M} \frac{k_{\parallel 1}}{k_{\parallel 0}k_{\parallel \mathrm{b}}\omega_1}\left(\frac{k_{\parallel 1}}{\omega_1}-\frac{k_{\parallel 0}}{\omega_0}\right)|\delta\psi_1|^2\delta\psi_0. \end{split} | (10) |
Substituting equations (9) and (10) into the quasi-neutrality condition, one obtains
\begin{split} \delta\psi_0 =\;& \delta\phi_0-\mathrm{i}\Lambda_0^1 \frac{1}{k_{\parallel 0}}\left(\frac{k_{\parallel 1}}{\omega_1}-\frac{k_{\parallel \mathrm{b}}}{\omega_\mathrm{b}}\right)\delta\psi_1^{*}\delta\psi_\mathrm{b} \\ &- (\Lambda_0^1)^2\frac{k_{\parallel 1}}{k_{\parallel 0}k_{\parallel \mathrm{b}}\omega_1}\left(\frac{k_{\parallel 1}}{\omega_1}-\frac{k_{\parallel 0}}{\omega_0}\right)|\delta\psi_1|^2\delta\psi_0. \end{split} | (11) |
On the other hand, the nonlinear gyrokinetic vorticity equation yields
\begin{split} & b_0\left(\delta\phi_0-\frac{k_{\parallel0}^2v_{\mathrm{A}}^2}{\omega_0^2}\delta\psi_0-\frac{\omega_{\mathrm{G}}^2}{\omega_0^2}\delta\phi_0\right) \\ &\qquad=\mathrm{i}\frac{\Lambda_0^1}{\omega_0}(b_{\mathrm{b}}-b_1)\left(1-\frac{k_{\parallel\mathrm{b}}k_{\parallel1}v_{\mathrm{A}}^2}{\omega_{\mathrm{b}}\omega_1}\right)\delta\phi_1^*\delta\phi_{\mathrm{b}}. \end{split} | (12) |
Combining equations (11) and (12), one obtains the nonlinear equation of \Omega_0
b_0 (\varepsilon_{\mathrm{A}0}+\varepsilon_{\mathrm{A}0}^{\mathrm{NL}})\delta\phi_0 = -\mathrm{i}\frac{\Lambda_0^1}{\omega_0}\beta_0\delta\phi_1^{*}\delta\phi_\mathrm{b}, | (13) |
with the linear \Omega_0 dielectric function in the WKB limit given by
\varepsilon_{\mathrm{A}0}\equiv 1-\frac{k_{\parallel 0}^2v_\mathrm{A}^2}{\omega_0^2}-\frac{\omega_\mathrm{G}^2}{\omega_0^2}, |
the nonlinear coupling coefficient \beta_0 given by
\beta_0 = b_0 \frac{k_{\parallel 0}v_\mathrm{A}}{\omega_0}\left(\frac{k_{\parallel 1}v_\mathrm{A}}{\omega_1}-\frac{k_{\parallel \mathrm{b}}v_\mathrm{A}}{\omega_\mathrm{b}}\right) -(b_\mathrm{b}-b_1)\left(1-\frac{k_{\parallel \mathrm{b}}k_{\parallel 1}v^2_\mathrm{A}}{\omega_\mathrm{b}\omega_1}\right), | (14) |
and \varepsilon_{\mathrm{A}0}^{\mathrm{NL}} due to nonlinear particle contribution to \Omega_\mathrm{b} being
\varepsilon_{\mathrm{A}0}^{\mathrm{NL}} = \frac{(\Lambda_0^1)^2}{\omega_0\omega_\mathrm{b}}\frac{k_{\parallel0}k_{\parallel1}v^2_\mathrm{A}}{\omega_0\omega_1}\frac{\omega_\mathrm{b}}{k_{\parallel \mathrm{b}}}\left(\frac{k_{\parallel 1}}{\omega_1}-\frac{k_{\parallel 0}}{\omega_0}\right)|\delta\phi_1|^2. |
Equation (13) is the nonlinear equation for the test RSAE \Omega_0 evolution due to the feedback of the quasi-mode \Omega_\mathrm{b} , and can be coupled with equation (8) to yield the nonlinear dispersion relation for \Omega_0 regulation via the high-frequency quasi-mode generation.
Combining equations (8) and (13), one obtains
b_0 b_\mathrm{b} (\varepsilon_{\mathrm{A}0}+\varepsilon_{\mathrm{A}0}^{\mathrm{NL}})\varepsilon_{\mathrm{Ab}}\delta \phi_0 = \frac{(\Lambda_0^1)^2}{\omega_0 \omega_\mathrm{b}}\beta_0 \beta_\mathrm{b}|\delta\phi_1|^2\delta\phi_0. | (15) |
Equation (15) describes the evolution of the test RSAE \Omega_0 due to the nonlinear interaction with another RSAE \Omega_1 , which can also be considered as the “parametric decay dispersion relation” of \Omega_1 decaying into \Omega_0 and \Omega_\mathrm{b} . Noting that \varepsilon_{\mathrm{A}0}^{\mathrm{NL}} related term contributes only to the nonlinear frequency shift, re-organizing equation (15) and taking the imaginary part, one obtains
\frac{2\gamma_{\mathrm{ND}}}{\omega_{0\mathrm{r}}}b_0 \delta\phi_0 = {\text{π}}\frac{(\Lambda_0^1)^2}{\omega_0 \omega_\mathrm{b}}\frac{\beta_0 \beta_\mathrm{b}}{b_\mathrm{b}}\delta(\varepsilon_{\mathrm{Ab}})|\delta\phi_1|^2\delta\phi_0. | (16) |
In deriving equation (16), we have expanded \varepsilon_{\mathrm{A}0}\simeq \mathrm{i}\partial_{\omega_{0\mathrm{r}}}\varepsilon_{\mathrm{A0r}}(\partial_t-\gamma_{0})\simeq -(2\mathrm{i}/\omega_{0\mathrm{r}})\gamma_{\mathrm{ND}} , with \gamma_0 being the linear growth rate of \Omega_0 and \gamma_{\mathrm{ND}} being its damping rate due to scattering by \Omega_\mathrm{b} , respectively. It is also noteworthy that, as \Omega_\mathrm{b} is a quasi-mode with the imaginary part of \varepsilon_{\mathrm{Ab}} being comparable to the real part, no expansion is made to \varepsilon_{\mathrm{Ab}} . Meanwhile, for the continuum damping of interest, \mathrm{Im} (1/\varepsilon_{\mathrm{Ab}}) = - {\text{π}}\delta(\varepsilon_{\mathrm{Ab}}) is taken, corresponding to the absorption of the nonlinear generated quasi-mode \Omega_\mathrm{b} near the SAW continuum resonance layer [55].
An estimation of the nonlinear damping rate is made to quantify the contribution of this nonlinear process. Multiplying equation (16) with \Phi_0^{*} and averaging over radial mode structure, one obtains
\frac{2\gamma_{\mathrm{ND}}}{\omega_{0\mathrm{r}}}\langle \Phi_0^{*}b_0\Phi_0\rangle_x = {\text{π}}\left\langle \frac{(\Lambda_0^1)^2}{\omega_0 \omega_\mathrm{b}}\frac{\beta_0 \beta_\mathrm{b}}{b_\mathrm{b}}\delta(\varepsilon_{\mathrm{Ab}})|A_1|^2|\Phi_1|^2|\Phi_0|^2 \right\rangle _x. | (17) |
Here, \langle \dots\rangle_x\equiv \int\cdots \mathrm{d}x denotes the integration over x , with the weighting of |\Phi_0|^2 . To make analytical progress, the parallel mode structures for RSAEs are taken as \Phi_k\simeq \exp(-x^2/2\Delta_k^2)/( {\text{π}}^{1/4}\Delta_k^{1/2}) with \Delta_k being the characteristic radial width of the parallel mode structures and one typically has \Delta_0\sim \Delta_1\lesssim{\cal{O}}(1) .
Equation (17) gives the test RSAE \Omega_0 damping rate due to coupling to a “background” RSAE \Omega_1 . As multiple- n RSAEs could be driven unstable simultaneously [37] at the same location, all the background RSAEs interacting with \Omega_0 should be taken into account. Summation over all the RSAEs within strong or moderate coupling range to the test RSAE \Omega_0 , and assuming that the integrated electromagnetic fluctuation amplitude induced by RSAEs is of the same order as the background RSAEs, the nonlinear damping rate can be estimated as
\frac{\gamma_{\mathrm{ND}}}{\omega_{0\mathrm{r}}}\sim \frac{b}{\Delta_0\Delta_1} \left(\frac{qR_0}{\rho_\mathrm{i}}\right)^2 \left|\frac{\delta B_r}{B_0}\right|^2 \frac{x_0^3}{\varpi^6} \sim {\cal{O}}(10^{-3}-10^{-2}). | (18) |
In estimating \gamma_{\mathrm{ND}} , \delta(\varepsilon_{\mathrm{Ab}}) = \partial\varepsilon_{\mathrm{Ab}}/\partial x\sum\nolimits_{x_0}^{}\delta(x-x_0)\simeq -2x/\varpi_\mathrm{b}^2\sum\nolimits_{x_0}^{}\delta(x-x_0) is taken, with \varpi\equiv \omega/\omega_\mathrm{A} , \omega_\mathrm{A}\equiv v_\mathrm{A}/(q_{\mathrm{min}}R_0) being the local Alfvén frequency and x_0 being the zero points of \varepsilon_{\mathrm{Ab}} . Other parameters are taken as T_\mathrm{i}/T_\mathrm{E}\sim {\cal{O}}(10^{-2}) , R_0/\rho_\mathrm{i}\sim {\cal{O}}(10^3) , |\delta B_{\mathrm{\mathit{r}}}/B_0|^2\sim{\cal{O}}(10^{-7}) , b\sim k^2_\theta\rho_\mathrm{i}^2\sim(T_\mathrm{i}/T_\mathrm{E})/q^2 for linearly unstable RSAEs with T_\mathrm{E} being the EP characteristic energy, \delta Br being the perturbed radial magnetic field, and B0 being the equilibrium magnetic field amplitude.
Equation (18) shows an appreciable nonlinear damping to the test RSAE \Omega_0 , which could make significant contribution to its nonlinear saturation. Note that in the present work, only the scattering to high-frequency quasi-mode is taken into account. Nevertheless, one can generalize the analysis to include other damping channels including other nonlinear mode coupling mechanism [47, 49, 58]. This is, however, beyond the scope of the present work, focusing on providing an interpretation to the simulation of reference [52], with the generalization to include coupling to background RSAEs with different toroidal mode numbers.
Motivated by recent simulation study [52], a novel mechanism for RSAE nonlinear saturation is proposed and analyzed, which is achieved through generation of a high-frequency quasi-mode by the nonlinear mode coupling of two RSAEs. This high-frequency quasi-mode can be significantly damped due to coupling to the corresponding SAW continuum, thus leads to a nonlinear damping effect to the RSAEs, and promotes their nonlinear saturation. The nonlinear dispersion relation describing this nonlinear coupling process is derived based on the nonlinear gyrokinetic theory. To estimate the relevance of this nonlinear saturation mechanism to RSAE, an estimation of the nonlinear damping rate to the test RSAE is given by \gamma_{\mathrm{ND}}/\omega_{0\mathrm{r}}\sim {\cal{O}}(10^{-3}-10^{-2}) under typical parameters of the future burning plasmas. This result could be comparable with the typical RSAE linear growth rate excited by resonant EPs, and thus, demonstrate the significance of the nonlinear saturation mechanism proposed here.
The nonlinear coupling coefficient derived in this work is complicated, and depends on various conditions including the frequency, wavenumber, radial mode structure of the RSAEs and the structure of Alfvén continuum corresponding to the mode number of quasi-mode. This study seeks to estimate the relevance of the nonlinear saturation mechanism and has not done a thorough investigation on the optimised parameter regimes for this process to occur and dominate. For more detailed analysis, interested readers may refer to [47] with the nonlinear coupling coefficient having similar features.
As a final remark, the high-frequency quasi-mode discussed here, is damped due to the coupling to local Alfvén continuum only, whereas other damping effects (e.g. radiative damping and Landau damping due to frequency mismatch) are not included, and inclusion of which could yield an enhanced regulation effect to RSAE. Besides, the final nonlinear saturation of RSAE may require other channels including the self-consistent evolution of EPs distribution function [59], spontaneous decay into LFAM [47], zonal field generation [49] and geodesic acoustic mode (GAM) generation [58]. Further comprehensive and detailed investigations, particularly through large scale nonlinear gyrokinetic simulations, are required to assess the saturation level of RSAE and the energetic particle transport rate.
In this appendix, the nonlinear particle responses to \Omega_\mathrm{b} are derived, based on the nonlinear components of equation (3). Specifically, for ion, noting \omega\gg k_\parallel v_\mathrm{i}\gtrsim\omega_\mathrm{d} , one has
\begin{split} -\mathrm{i}\omega\delta H_{\mathrm{bi}}^{\mathrm{NL}} \simeq &-\Lambda_0^1\left( J_1\delta L_1 \delta H_{0\mathrm{i}}^\mathrm{L}- J_0\delta L_0\delta H_{1\mathrm{i}}^\mathrm{L} \right) \\ \simeq& -\Lambda_0^1\left( J_1\delta\phi_1 \delta H_{0\mathrm{i}}^\mathrm{L}- J_0\delta\phi_0\delta H_{1\mathrm{i}}^\mathrm{L} \right)\\ = &\,\, 0. \end{split} | (A.1) |
Note in this derivation, \delta L\equiv \delta\phi-(k_\parallel v_\parallel/\omega)\delta\psi\simeq \delta\phi for ion with \omega\gg k_\parallel v_\mathrm{i} , and \delta H_{k\mathrm{i}}^\mathrm{L} = (e/T_\mathrm{i})F_\mathrm{M}J_k\delta\phi_k is used.
For electron with k_\parallel v_\mathrm{e}\gg\omega \gg\omega_\mathrm{d} and negligible FLR effects, only the k_\parallel v_\parallel term is kept, and the nonlinear gyrokinetic equation for electron can be written as
\begin{split} \mathrm{i}k_{\parallel \mathrm{b}} v_\parallel\delta H_{\mathrm{be}}^{\mathrm{NL}}\simeq&-\Lambda_0^1\left( \delta L_1 \delta H_{0\mathrm{e}}^\mathrm{L}- \delta L_0\delta H_{1\mathrm{e}}^\mathrm{L} \right) \\ \simeq&-\Lambda_0^1\frac{e}{T_\mathrm{e}}F_\mathrm{M}\left( \frac{k_{\parallel1} v_\parallel}{\omega_1}-\frac{k_{\parallel0} v_\parallel}{\omega_0} \right)\delta\psi_0\delta\psi_1. \end{split} | (A.2) |
One obtains, the nonlinear electron response to \Omega_\mathrm{b}
\delta H_{\mathrm{be}}^{\mathrm{NL}} = \mathrm{i}\Lambda_0^1\frac{e}{T_\mathrm{e}}F_\mathrm{M}\frac{1}{k_{\parallel \mathrm{b}}}\left(\frac{k_{\parallel1}}{\omega_1}-\frac{k_{\parallel0}}{\omega_0}\right)\delta\psi_0\delta\psi_1. | (A.3) |
Note in this derivation, \delta L\equiv \delta\phi-(k_\parallel v_\parallel/\omega)\delta\psi\simeq -(k_\parallel v_\parallel/\omega)\delta\psi for electron with \omega\ll k_\parallel v_\mathrm{e} , and \delta H_{k\mathrm{e}}^\mathrm{L} = -(e/T_\mathrm{e})F_\mathrm{M}\delta\psi_k is used. The nonlinear non-adiabatic responses to \Omega_0 can be derived similarly.
[1] |
Alfvén H 1942 Nature 150 405 doi: 10.1038/150405d0
|
[2] |
Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008 doi: 10.1103/RevModPhys.88.015008
|
[3] |
Heidbrink W W et al 2007 Phys. Rev. Lett. 99 245002 doi: 10.1103/PhysRevLett.99.245002
|
[4] |
Ding R et al 2015 Nucl. Fusion 55 023013 doi: 10.1088/0029-5515/55/2/023013
|
[5] |
Fasoli A et al 2007 Nucl. Fusion 47 S264 doi: 10.1088/0029-5515/47/6/S05
|
[6] |
Sharapov S E et al 2002 Phys. Plasmas 9 2027 doi: 10.1063/1.1448346
|
[7] |
Zonca F et al 2002 Phys. Plasmas 9 4939 doi: 10.1063/1.1519241
|
[8] |
Grad H 1969 Physics Today 22 34 doi: 10.1063/1.3035293
|
[9] |
Chen L and Hasegawa A 1974 Phys. Fluids 17 1399 doi: 10.1063/1.1694904
|
[10] |
Hasegawa A and Chen L 1976 Phys. Fluids 19 1924 doi: 10.1063/1.861427
|
[11] |
Chen L, Zonca F and Lin Y 2021 Rev. Mod. Plasma Phys. 5 1 doi: 10.1007/s41614-020-00049-3
|
[12] |
Chen L 1994 Phys. Plasmas 1 1519 doi: 10.1063/1.870702
|
[13] |
Cheng C Z, Chen L and Chance M S 1985 Ann. Phys. 161 21 doi: 10.1016/0003-4916(85)90335-5
|
[14] |
Kieras C E and Tataronis J A 1982 J. Plasma Phys. 28 395 doi: 10.1017/S0022377800000386
|
[15] |
Heidbrink W W et al 1993 Phys. Rev. Lett. 71 855 doi: 10.1103/PhysRevLett.71.855
|
[16] |
Zonca F, Chen L and Santoro R A 1996 Plasma Phys. Control. Fusion 38 2011 doi: 10.1088/0741-3335/38/11/011
|
[17] |
Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885 doi: 10.1063/1.860459
|
[18] |
Zonca F and Chen L 1996 Phys. Plasmas 3 323 doi: 10.1063/1.871857
|
[19] |
Zonca F and Chen L 2014 Phys. Plasmas 21 072120 doi: 10.1063/1.4889019
|
[20] |
Zonca F and Chen L 2014 Phys. Plasmas 21 072121 doi: 10.1063/1.4889077
|
[21] |
Wang X, Zonca F and Chen L 2010 Plasma Phys. Control. Fusion 52 115005 doi: 10.1088/0741-3335/52/11/115005
|
[22] |
Kimura H et al 1998 Nucl. Fusion 38 1303 doi: 10.1088/0029-5515/38/9/304
|
[23] |
Takechi M et al 2005 Phys. Plasmas 12 082509 doi: 10.1063/1.1938973
|
[24] |
Breizman B N et al 2003 Phys. Plasmas 10 3649 doi: 10.1063/1.1597495
|
[25] |
Berk H L et al 2001 Phys. Rev. Lett. 87 185002 doi: 10.1103/PhysRevLett.87.185002
|
[26] |
Fu G Y and Berk H L 2006 Phys. Plasmas 13 052502 doi: 10.1063/1.2196246
|
[27] |
Gorelenkov N N 2008 Phys. Plasmas 15 110701 doi: 10.1063/1.3027512
|
[28] |
Deng W J et al 2010 Phys. Plasmas 17 112504 doi: 10.1063/1.3496057
|
[29] |
Huang J et al 2020 Nucl. Fusion 60 126007 doi: 10.1088/1741-4326/abaf33
|
[30] |
Heidbrink W W et al 2013 Phys. Plasmas 20 082504 doi: 10.1063/1.4817950
|
[31] |
Chen W et al 2014 Nucl. Fusion 54 104002 doi: 10.1088/0029-5515/54/10/104002
|
[32] |
Dreval M et al 2022 Nucl. Fusion 62 056001 doi: 10.1088/1741-4326/ac45a4
|
[33] |
Breizman B N and Sharapov S E 2011 Plasma Phys. Control. Fusion 53 054001 doi: 10.1088/0741-3335/53/5/054001
|
[34] |
Shimada M et al 2007 Nucl. Fusion 47 S1 doi: 10.1088/0029-5515/47/6/S01
|
[35] |
Wan Y X et al 2017 Nucl. Fusion 57 102009 doi: 10.1088/1741-4326/aa686a
|
[36] |
Creely A J et al 2020 J. Plasma Phys. 86 865860502 doi: 10.1017/S0022377820001257
|
[37] |
Fisch N J 2000 Nucl. Fusion 40 1095 doi: 10.1088/0029-5515/40/6/307
|
[38] |
Gormezano C et al 2007 Nucl. Fusion 47 S285 doi: 10.1088/0029-5515/47/6/S06
|
[39] |
Sauter O, Angioni C and Lin-Liu Y R 1999 Phys. Plasmas 6 2834 doi: 10.1063/1.873240
|
[40] |
Wang T et al 2018 Phys. Plasmas 25 062509 doi: 10.1063/1.5026652
|
[41] |
Wang T et al 2019 Phys. Plasmas 26 012504 doi: 10.1063/1.5064863
|
[42] |
Wang T et al 2020 Nucl. Fusion 60 126032 doi: 10.1088/1741-4326/abb2d4
|
[43] |
Wei S Z et al 2022 Nucl. Fusion 62 126038 doi: 10.1088/1741-4326/ac968f
|
[44] |
Chen L and Zonca F 2017 Phys. Plasmas 24 072511 doi: 10.1063/1.4993056
|
[45] |
Falessi M V et al 2020 J. Plasma Phys. 86 845860501 doi: 10.1017/S0022377820000975
|
[46] |
Tsai S T and Chen L 1993 Phys. Fluids B 5 3284 doi: 10.1063/1.860624
|
[47] |
Zonca F et al 1998 Plasma Phys. Control. Fusion 40 2009 doi: 10.1088/0741-3335/40/12/002
|
[48] |
Zonca F et al 1999 Phys. Plasmas 6 1917 doi: 10.1063/1.873449
|
[49] |
Ma R R et al 2022 Plasma Phys. Control. Fusion 64 035019 doi: 10.1088/1361-6587/ac434a
|
[50] |
Ma R R et al 2023 Phys. Plasmas 30 042105 doi: 10.1063/5.0141186
|
[51] |
Chen L and Zonca F 2012 Phys. Rev. Lett. 109 145002 doi: 10.1103/PhysRevLett.109.145002
|
[52] |
Wei S Z et al 2021 J. Plasma Phys. 87 905870505 doi: 10.1017/S0022377821000908
|
[53] |
Lin Z H et al 1998 Science 281 1835 doi: 10.1126/science.281.5384.1835
|
[54] |
Zonca F et al 2015 Plasma Phys. Control. Fusion 57 014024 doi: 10.1088/0741-3335/57/1/014024
|
[55] |
Connor J W, Hastie R J and Taylor J B 1978 Phys. Rev. Lett. 40 396 doi: 10.1103/PhysRevLett.40.396
|
[56] |
Biglari H and Chen L 1991 Phys. Rev. Lett. 67 3681 doi: 10.1103/PhysRevLett.67.3681
|
[57] |
Chen L and Zonca F 2011 EPL 96 35001 doi: 10.1209/0295-5075/96/35001
|
[58] |
Chen L and Zonca F 2013 Phys. Plasmas 20 055402 doi: 10.1063/1.4804628
|
[59] |
Park W et al 1992 Phys. Fluids B 4 2033 doi: 10.1063/1.860011
|
[60] |
Briguglio S et al 1995 Phys. Plasmas 2 3711 doi: 10.1063/1.871071
|
[61] |
Frieman E A and Chen L 1982 Phys. Fluids 25 502 doi: 10.1063/1.863762
|
[62] |
Rosenbluth M N and Hinton F L 1998 Phys. Rev. Lett. 80 724 doi: 10.1103/PhysRevLett.80.724
|
[63] |
Sagdeev R Z and Galeev A A 1969 Nonlinear Plasma Theory (New York: Benjamin
|
[64] |
Wei S Z et al 2021 Chin. Phys. Lett. 38 035201 doi: 10.1088/0256-307X/38/3/035201
|
[65] |
Berk H L and Breizman B N 1990 Phys. Fluids B 2 2226 doi: 10.1063/1.859404
|
[66] |
Berk H L and Breizman B N 1990 Phys. Fluids B 2 2235 doi: 10.1063/1.859405
|
[67] |
Berk H L and Breizman B N 1990 Phys. Fluids B 2 2246 doi: 10.1063/1.859406
|
[68] |
Zonca F et al 2015 New J. Phys. 17 013052 doi: 10.1088/1367-2630/17/1/013052
|
[69] |
Falessi M V and Zonca F 2019 Phys. Plasmas 26 022305 doi: 10.1063/1.5063874
|
[70] |
Zhang H S, Lin Z H and Holod I 2012 Phys. Rev. Lett. 109 025001 doi: 10.1103/PhysRevLett.109.025001
|
[71] |
Wang X et al 2012 Phys. Rev. E 86 045401(R doi: 10.1103/PhysRevE.86.045401
|
[72] |
Yu L M et al 2022 EPL 138 54002 doi: 10.1209/0295-5075/ac3ccf
|
[73] |
Todo Y and Sato T 1998 Phys. Plasmas 5 1321 doi: 10.1063/1.872791
|
[74] |
Fu G Y et al 2006 Phys. Plasmas 13 052517 doi: 10.1063/1.2203604
|
[75] |
Zhu J, Ma Z W and Wang S 2016 Phys. Plasmas 23 122506 doi: 10.1063/1.4971806
|
[76] |
Chen L, White R B and Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122 doi: 10.1103/PhysRevLett.52.1122
|
[77] |
Zonca F, et al 2005 Nucl. Fusion 45 477 doi: 10.1088/0029-5515/45/6/009
|
[78] |
Tobias B J et al 2011 Phys. Rev. Lett. 106 075003 doi: 10.1103/PhysRevLett.106.075003
|
[79] |
Briguglio S, Zonca F and Vlad G 1998 Phys. Plasmas 5 3287 doi: 10.1063/1.872997
|
[80] |
Vlad G, Zonca F and Briguglio S 1999 Riv. Nuovo Cim. 22 1 doi: 10.1007/BF02874568
|
[81] |
Izzo R et al 1983 Phys. Fluids 26 2240 doi: 10.1063/1.864379
|
[82] |
Breizman B N et al 2005 Phys. Plasmas 12 112506 doi: 10.1063/1.2130692
|
[83] |
Hahm T S, Lee W W and Brizard A 1988 Phys. Fluids 31 1940 doi: 10.1063/1.866641
|
[84] |
Chew G F, Goldberger M L and Low F E 1956 Proc. Roy. Soc. London Ser. A Math. Phys. Sci. 236 112 doi: 10.1098/rspa.1956.0116
|
[85] |
Albanese R et al 2017 Fusion Eng. Des. 122 274 doi: 10.1016/j.fusengdes.2016.12.030
|
[86] |
Stix T H 1972 Plasma Phys. 14 367 doi: 10.1088/0032-1028/14/4/002
|
[87] |
Pizzuto A et al 2010 Nucl. Fusion 50 095005 doi: 10.1088/0029-5515/50/9/095005
|
[88] |
Vlad G et al 2013 Nucl. Fusion 53 083008 doi: 10.1088/0029-5515/53/8/083008
|
[89] |
Spong D A 2013 Nucl. Fusion 53 053008 doi: 10.1088/0029-5515/53/5/053008
|
[90] |
Yang Y R et al 2020 Nucl. Fusion 60 106012 doi: 10.1088/1741-4326/aba673
|
[91] |
Briguglio S et al 2014 Phys. Plasmas 21 112301 doi: 10.1063/1.4901028
|
[92] |
Zonca F et al 2007 Nucl. Fusion 47 1588 doi: 10.1088/0029-5515/47/11/022
|
[93] |
Fu G Y and Cheng C Z 1992 Phys. Fluids B 4 3722 doi: 10.1063/1.860328
|
[94] |
Chen L 1988 Theory of Fusion Plasmas edited by J. Vaclavik and F. Troyon and E. Sindoni, Association EURATOM, Bologna, Italy, p 327
|
[95] |
Fu G Y and Van Dam J W 1989 Phys. Fluids B 1 1949 doi: 10.1063/1.859057
|
[96] |
Pinches S D et al 2015 Phys. Plasmas 22 021807 doi: 10.1063/1.4908551
|
[97] |
Lauber P 2015 Plasma Phys. Control. Fusion 57 054011 doi: 10.1088/0741-3335/57/5/054011
|
[98] |
Schneller M, Lauber P and Briguglio S 2016 Plasma Phys. Control. Fusion 58 014019 doi: 10.1088/0741-3335/58/1/014019
|
[99] |
Rodrigues P et al 2015 Nucl. Fusion 55 083003 doi: 10.1088/0029-5515/55/8/083003
|
[100] |
Fitzgerald M et al 2016 Nucl. Fusion 56 112010 doi: 10.1088/0029-5515/56/11/112010
|
[101] |
White R B 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 2200 doi: 10.1016/j.cnsns.2011.02.013
|
[102] |
Briguglio S et al 2017 Nucl. Fusion 57 072001 doi: 10.1088/1741-4326/aa515b
|
[103] |
Wang X et al 2016 Phys. Plasmas 23 012514 doi: 10.1063/1.4940785
|
[104] |
Hsu C T and Sigmar D J 1992 Phys. Fluids B 4 1492 doi: 10.1063/1.860060
|
[105] |
White R B et al 1983 Phys. Fluids 26 2958 doi: 10.1063/1.864060
|
[106] |
Heidbrink W W and White R B 2020 Phys. Plasmas 27 030901 doi: 10.1063/1.5136237
|
[107] |
Berk H L, Breizman B N and Pekker M 1996 Phys. Rev. Lett. 76 1256 doi: 10.1103/PhysRevLett.76.1256
|
[108] |
Zonca F et al 2021 J. Phys.: Conf. Ser. 1785 012005 doi: 10.1088/1742-6596/1785/1/012005
|
[109] |
Du X D et al 2021 Phys. Rev. Lett. 127 235002 doi: 10.1103/PhysRevLett.127.235002
|
[110] |
Shinohara K et al 2001 Nucl. Fusion 41 603 doi: 10.1088/0029-5515/41/5/313
|
[111] |
Shinohara K et al 2004 Plasma Phys. Control. Fusion 46 S31 doi: 10.1088/0741-3335/46/7/S03
|
[112] |
Sharapov S E et al 2006 Nucl. Fusion 46 S868 doi: 10.1088/0029-5515/46/10/S02
|
[113] |
Bierwage A, White R B and Duarte V N 2021 Plasma Fusion Res. 16 1403087 doi: 10.1585/pfr.16.1403087
|
[114] |
Wang X et al 2022 Phys. Plasmas 29 032512 doi: 10.1063/5.0080785
|
[115] |
Briguglio S et al 2007 Phys. Plasmas 14 055904 doi: 10.1063/1.2710208
|
[116] |
Bierwage A et al 2013 Nucl. Fusion 53 073007 doi: 10.1088/0029-5515/53/7/073007
|
[117] |
White R B et al 2010 Phys. Plasmas 17 056107 doi: 10.1063/1.3327208
|
[118] |
White R B et al 2010 Plasma Phys. Control. Fusion 52 045012 doi: 10.1088/0741-3335/52/4/045012
|
[119] |
Falessi M V et al 2023 New J. Phys. 25 123035 doi: 10.1088/1367-2630/ad127d
|
[120] |
Hahm T S and Chen L 1995 Phys. Rev. Lett. 74 266 doi: 10.1103/PhysRevLett.74.266
|
[121] |
Chen L et al 1998 Plasma Phys. Control. Fusion 40 1823 doi: 10.1088/0741-3335/40/11/001
|
[122] |
Zonca F et al 1995 Phys. Rev. Lett. 74 698 doi: 10.1103/PhysRevLett.74.698
|
[123] |
Qiu Z Y, Chen L and Zonca F 2013 EPL 101 35001 doi: 10.1209/0295-5075/101/35001
|
[124] |
Qiu Z Y, Chen L and Zonca F 2016 Phys. Plasmas 23 090702 doi: 10.1063/1.4962997
|
[125] |
Qiu Z Y, Chen L and Zonca F 2019 Nucl. Fusion 59 066024 doi: 10.1088/1741-4326/ab1693
|
[126] |
Qiu Z Y et al 2019 Nucl. Fusion 59 066031 doi: 10.1088/1741-4326/ab1285
|
[127] |
Wei S Z et al 2019 Phys. Plasmas 26 074501 doi: 10.1063/1.5100597
|
[128] |
Qiu Z Y, Chen L and Zonca F 2023 Rev. Mod. Plasma Phys. 7 28 doi: 10.1007/s41614-023-00130-7
|
[129] |
Chen L, Lin Z H and White R 2000 Phys. Plasmas 7 3129 doi: 10.1063/1.874222
|
[130] |
Chen L and Hasegawa A 1991 J. Geophys. Res. 96 1503 doi: 10.1029/90JA02346
|
[131] |
Chen L et al 2001 Nucl. Fusion 41 747 doi: 10.1088/0029-5515/41/6/310
|
[132] |
Chen L, Qiu Z Y and Zonca F 2022 Phys. Plasmas 29 050701 doi: 10.1063/5.0091057
|
[133] |
Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448 doi: 10.1063/1.1691835
|
[134] |
Zonca F and Chen L 2008 EPL 83 35001 doi: 10.1209/0295-5075/83/35001
|
[135] |
Qiu Z Y, Chen L and Zonca F 2018 Plasma Sci. Technol. 20 094004 doi: 10.1088/2058-6272/aab4f0
|
[136] |
Conway G D, Smolyakov A I and Ido T 2022 Nucl. Fusion 62 013001 doi: 10.1088/1741-4326/ac0dd1
|
[137] |
Heidbrink W W et al 2021 Nucl. Fusion 61 016029 doi: 10.1088/1741-4326/abc4c3
|
[138] |
Russell D A, Hanson J D and Ott E 1980 Phys. Rev. Lett. 45 1175 doi: 10.1103/PhysRevLett.45.1175
|
[139] |
Qiu Z Y, Chen L and Zonca F 2016 Nucl. Fusion 56 106013 doi: 10.1088/0029-5515/56/10/106013
|
[140] |
Qiu Z Y, Chen L and Zonca F 2017 Nucl. Fusion 57 056017 doi: 10.1088/1741-4326/aa6413
|
[141] |
Guo Z H, Chen L and Zonca F 2009 Phys. Rev. Lett. 103 055002 doi: 10.1103/PhysRevLett.103.055002
|
[142] |
Chen N F et al 2022 Plasma Phys. Control. Fusion 64 015003 doi: 10.1088/1361-6587/ac35a6
|
[143] |
Todo Y, Berk H L and Breizman B N 2010 Nucl. Fusion 50 084016 doi: 10.1088/0029-5515/50/8/084016
|
[144] |
Biancalani A et al 2021 Plasma Phys. Control. Fusion 63 065009 doi: 10.1088/1361-6587/abf256
|
[145] |
Liu P et al 2022 Phys. Rev. Lett. 128 185001 doi: 10.1103/PhysRevLett.128.185001
|
[146] |
Wang Y H et al 2022 J. Plasma Phys. 88 895880601 doi: 10.1017/S0022377822001179
|
[147] |
Chirikov B V 1979 Phys. Rep. 52 263 doi: 10.1016/0370-1573(79)90023-1
|
[148] |
Zhang W L, Lin Z H and Chen L 2008 Phys. Rev. Lett. 101 095001 doi: 10.1103/PhysRevLett.101.095001
|
[149] |
Collins C S et al 2016 Phys. Rev. Lett. 116 095001 doi: 10.1103/PhysRevLett.116.095001
|
[150] |
Chen L, Qiu Z Y and Zonca F 2022 Nucl. Fusion 62 094001 doi: 10.1088/1741-4326/ac7cf9
|
[151] |
Chen L, Qiu Z Y and Zonca F 2023 Nucl. Fusion 63 106016 doi: 10.1088/1741-4326/acf230
|
[152] |
Zonca F et al 2006 Plasma Phys. Control. Fusion 48 B15 doi: 10.1088/0741-3335/48/12B/S02
|
[153] |
Chen L and Zonca F 2007 Nucl. Fusion 47 S727 doi: 10.1088/0029-5515/47/10/S20
|
[154] |
Mazzi S et al 2022 Nat. Phys. 18 776 doi: 10.1038/s41567-022-01626-8
|
[1] | Yu ZHANG (张宇), Jianjun WU (吴建军), Yang OU (欧阳), Daixian ZHANG (张代贤), Jian LI (李健). Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy[J]. Plasma Science and Technology, 2020, 22(4): 45501-045501. DOI: 10.1088/2058-6272/ab5a8e |
[2] | Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46 |
[3] | Yan WANG (王艳), Zhimin LIU (刘智民), Lizhen LIANG (梁立振), Chundong HU (胡纯栋). Preliminary results of optical emission spectroscopy by line ratio method in the RF negative ion source at ASIPP[J]. Plasma Science and Technology, 2019, 21(4): 45601-045601. DOI: 10.1088/2058-6272/aaf592 |
[4] | Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31 |
[5] | LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05 |
[6] | F. MARCHAL, M. YOUSFI, N. MERBAHI, G. WATTIEAUX, A. PIQUEMAL. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity[J]. Plasma Science and Technology, 2016, 18(3): 259-265. DOI: 10.1088/1009-0630/18/3/08 |
[7] | A. SAEED, A. W. KHAN, M. SHAFIQ, F. JAN, M. ABRAR, M. ZAKA-UL-ISLAM, M. ZAKAULLAH. Investigation of 50 Hz Pulsed DC Nitrogen Plasma with Active Screen Cage by Trace Rare Gas Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2014, 16(4): 324-328. DOI: 10.1088/1009-0630/16/4/05 |
[8] | Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11 |
[9] | WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566. |
[10] | N. U. REHMAN, F. U. KHAN, S. NASEER, G. MURTAZA, S. S. HUSSAIN, I. AHMAD, M. ZAKAULLAH. Trace-Rare-Gas Optical Emission Spectroscopy of Nitrogen Plasma Generated at a Frequency of 13.56 MHz[J]. Plasma Science and Technology, 2011, 13(2): 208-212. |