Advanced Search+
Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
Citation: Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46

Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11605023, 11805028, and 11705020), the National Key R&D Program of China (No. 2017YFE0301300), the China Postdoctoral Science Foundation (Nos. 2017T100172 and 2016M591423), and the Fundamental Research Funds for the Central Universities (Nos. DUT17RC(4)53 and DUT18LK38).
More Information
  • Received Date: November 13, 2018
  • The study of sulfur hexafluoride (SF6) discharge is vital for its application in gas-insulated equipment. Direct current partial discharge (PD) may cause SF6 decomposition, and the decomposed products of SF6, such as F atoms, play a dominant role in the breakdown of insulation systems. In this study, the PD caused by metal protrusion defects is simulated by a needle-plate electrode using pulsed high voltage in SF6/Ar mixtures. The spatial and temporal characteristics of SF6/Ar plasma are analyzed by measuring the emission spectra of F and Ar atoms, which are important for understanding the characteristics of PD. The spatial resolved results show that both F and Ar atom spectral intensities increase first from the plate anode to the needle and then decrease under the conditions of a background pressure of 400 Pa, peak voltage of −1000 V, frequency of 2 kHz, pulse width of 60 μs, and electrode gap of 5–9 mm. However, the distribution characteristics of F and Ar are significantly different. The temporal distribution results show that the spectral intensity of Ar decreases first and then increases slowly, while the spectral intensity of F increases slowly for the duration of the pulsed discharge at the electrode gap of 5 mm and the pulse width of 40–80 μs.
  • [1]
    Wang Y, Li L and YeoW2011 J. Electromagn. Anal. Appl. 3 179
    [2]
    Zhang X X et al 2017 The SF6 decomposition mechanism: background and significance Nanomaterials Based Gas Sensors for SF6 Decomposition Components Detection (Rijeka : Intech) (https://doi.org/10.5772/intechopen.68284)
    [3]
    Cai Y J, Guan Y G and Liu W D 2017 Plasma Sci. Technol. 19 064011
    [4]
    Pinheiro M J et al 2002 J. Phys. D: Appl. Phys. 35 3077
    [5]
    Tomita K et al 2013 J. Phys. D: Appl. Phys. 46 382001
    [6]
    Chang J S et al 2011 Plasma Sci. Technol. 13 719
    [7]
    Raymond W J K et al 2015 Measurement 68 164
    [8]
    Ibrahim V M, Abdul-Malek Z and Muhamad N A 2017 Indonesian J. Electr. Eng. Comput. Sci. 7 9
    [9]
    Stone G C 2005 IEEE Trans. Dielectr. Electr. Insul. 12 891
    [10]
    Liu M et al 2017 Energies 10 640
    [11]
    Tang J et al 2012 IEEE Trans. Dielectr. Electr. Insul. 19 29
    [12]
    Tang J et al 2012 IEEE Trans. Dielectr. Electr. Insul. 19 37
    [13]
    Yang J K et al 2012 Insul. Mater. 45 61 (in Chinese)
    [14]
    Ren M, Dong M and Liu J L 2016 Energies 9 152
    [15]
    Can M and Etemoglu A B 2004 Filtration?&?Separation 41 37
    [16]
    Tang J et al 2012 IET Sci. Meas. Technol. 6 198
    [17]
    Van Brunt R J and Herron J T 1994 Phys. Scr. T53 9
    [18]
    Tang J et al 2017 Energies 10 1119
    [19]
    Van Brunt R J 1994 IEEE Trans. Dielectr. Electr. Insul. 1 761
    [20]
    Van Brunt R J and Herron J T 1990 IEEE Trans. Electr. Insul. 25 75
    [21]
    Braun J M and Chu F Y 1986 IEEE Trans. Power Deliv. 1 81
    [22]
    Lallement L et al 2009 Plasma Sources Sci. Technol. 18 025001
    [23]
    Yang W et al 2016 J. Vac. Sci. Technol. A 34 031305
    [24]
    Yang D et al 2017 Energies 10 1085
    [25]
    Zhang L et al 2017 Plasma Sci. Technol. 19 064006
    [26]
    Wang Y et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 292 012044
    [27]
    Wang Y et al 2017 Plasma Sci. Technol. 19 115403
    [28]
    Li C et al 2013 Plasma Sci. Technol. 15 875
    [29]
    NIST Atomic Spectra Database (ver.5.1), National Institute of Standards and Technology (http://physics.nist.gov/asd)
  • Related Articles

    [1]Yuanxiang ZHOU (周远翔), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵), Yunxiao ZHANG (张云霄), Yajun MO (莫雅俊), Jiantao SUN (孙建涛). Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage[J]. Plasma Science and Technology, 2018, 20(5): 54016-054016. DOI: 10.1088/2058-6272/aaa479
    [2]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [3]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [4]Manping LI (李曼苹), Kai WU (吴锴), Zhao ZHANG (张钊), Yonghong CHENG (成永红). Effect of toughened epoxy resin on partial discharge at solid–solid interface[J]. Plasma Science and Technology, 2017, 19(2): 25401-025401. DOI: 10.1088/2058-6272/19/2/025401
    [5]Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
    [6]ZHANG Jiao(张佼), WANG Yanhui(王艳辉), WANG Dezhen(王德真), ZHUANG Juan(庄娟). Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(2): 110-117. DOI: 10.1088/1009-0630/16/2/05
    [7]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [8]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [9]LUO Yongfen, JI Haiying, HUANG Ping, LI Yanming. Chaotic Characteristic of Time Series of Partial Discharge in Oil-Paper Insulation[J]. Plasma Science and Technology, 2011, 13(6): 740-746.
    [10]WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.
  • Cited by

    Periodical cited type(16)

    1. Shentu, L., Peng, D., Xi, J. A novel neural network architecture dedicated for LIBS spectrum analysis with its application to steel pipe classification. Measurement Science and Technology, 2025, 36(1): 015215. DOI:10.1088/1361-6501/ad9166
    2. Hao, Z., Liu, K., Lian, Q. et al. Machine learning in laser-induced breakdown spectroscopy: A review. Frontiers of Physics, 2024, 19(6): 62501. DOI:10.1007/s11467-024-1427-2
    3. Wang, A., Cui, J.-C., Song, W.-R. et al. Quantitative Analysis of Coal Properties Using Laser-Induced Breakdown Spectroscopy and Semi-Supervised Learning | [基 于 激 光诱 导 击穿 光谱 与 半监 督 学 习 的 煤质 定 量 分 析 研 究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(7): 1940-1945. DOI:10.3964/j.issn.1000-0593(2024)07-1940-06
    4. Wang, D., Xu, L., Gao, W. et al. Application of Semi-Supervised Learning Model to Coal Sample Classification. Applied Sciences (Switzerland), 2024, 14(4): 1606. DOI:10.3390/app14041606
    5. Képeš, E., Vrábel, J., Siozos, P. et al. Quantification of alloying elements in steel targets: The LIBS 2022 regression contest. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106710
    6. Van den Eynde, S., Díaz-Romero, D.J., Zaplana, I. et al. Deep learning regression for quantitative LIBS analysis. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106634
    7. Zhu, Q.-X., Zhang, H.-T., Tian, Y. et al. Co-training based virtual sample generation for solving the small sample size problem in process industry. ISA Transactions, 2023. DOI:10.1016/j.isatra.2022.08.021
    8. Zhang, D., Zhang, H., Zhao, Y. et al. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Applied Spectroscopy Reviews, 2022, 57(2): 89-111. DOI:10.1080/05704928.2020.1843175
    9. Wang, Z., Afgan, M.S., Gu, W. et al. Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. TrAC - Trends in Analytical Chemistry, 2021. DOI:10.1016/j.trac.2021.116385
    10. Chang, F., Yang, J., Lu, H. et al. Repeatability enhancing method for one-shot LIBS analysis: Via spectral intensity correction based on probability distribution. Journal of Analytical Atomic Spectrometry, 2021, 36(8): 1712-1723. DOI:10.1039/d1ja00040c
    11. Xu, W., Tang, J., Xia, H. A review of semi-supervised learning for industrial process regression modeling. 2021. DOI:10.23919/CCC52363.2021.9550262
    12. Li, D., Huang, D., Liu, Y. Research on semi-supervised heterogeneous adaptive co-training soft-sensor model | [基于协同训练的半监督异构自适应软测量建模方法的研究]. Huagong Xuebao/CIESC Journal, 2020, 71(5): 2128-2138. DOI:10.11949/0438-1157.20191378
    13. Gao, J., Tian, Y., Chen, X. Antenna Optimization Based on Co-Training Algorithm of Gaussian Process and Support Vector Machine. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.3039269
    14. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    15. Bai, X., Zhang, L., Yang, T. et al. Semi-supervised learning based acoustic NLOS identification for smartphone indoor positioning. 2019. DOI:10.1109/ICSPCC46631.2019.8960779
    16. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (171) PDF downloads (443) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return