Advanced Search+
YU Minghao, Yusuke TAKAHASHI, Hisashi KIHARA, Ken-ichi ABE, Kazuhiko YAMADA, Takashi ABE, Satoshi MIYATANI. Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow[J]. Plasma Science and Technology, 2015, 17(9): 749-760. DOI: 10.1088/1009-0630/17/9/06
Citation: YU Minghao, Yusuke TAKAHASHI, Hisashi KIHARA, Ken-ichi ABE, Kazuhiko YAMADA, Takashi ABE, Satoshi MIYATANI. Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow[J]. Plasma Science and Technology, 2015, 17(9): 749-760. DOI: 10.1088/1009-0630/17/9/06

Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow

More Information
  • Received Date: September 12, 2014
  • Two-dimensional (2D) numerical simulations of thermochemical nonequilibrium in?ductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles. The third-order accuracy elec?tron transport properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process. The flow characteristics such as thermal nonequilibrium, inductive discharge, e?ects of Lorentz force were made clear through the present study. It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT.
  • 1 Suzuki T, Fujita K and Sakai T. 2010, J. Thermophys.Heat Tr., 24: 589 2 Gao F, Liu W, Zhao S, et al. 2013, Chin. Phys. B, 22:115205 3 Watanabe T and Okumiya H. 2004, Sci. Technol. Adv.Mat., 5: 639 4 Bernardi D, Colomobo V, Ghedini E, et al. 2003, Eur.Phys. J. D, 28: 423 5 Cheng J, Zhu Y, Ji L H. 2012, Plasma Sci. Technol.,14: 1059 6 Chen X. 1990, Int. J. Heat Mass Tran., 33: 815 7 Xue S, Proulx P, Boulos M I. 2001, J. Phys. D: Appl.Phys., 34: 1897 8 Lenzner S, Auweter-Kurtz M, Heiermant J, et al. 2000,J. Thermophys. Heat Tr., 14: 388 9 Mostaghimi J, Proulx P and Boulos M I. 1987, J. Appl.Phys., 61: 1753 10 Vanden Abeele D, Degrez G. 2000, AIAA J., 38: 234 11 Wu B, Lin L, Zhang X, et al. 2000, Plasma Sci. Technol., 2: 565 12 Barnes R M, Nikdel S. 1976, J. Appl. Phys., 47: 3929 13 Punjabi S B, Joshi N K, Mangalvedekar H A, et al.2012, Phys. Plasmas, 19: 012108 14 Tanaka Y and Sakuta T. 2002, J. Phys. D: Appl. Phys.,35: 468 15 Dunn M G and Lordi K A. 1970, AIAA J., 8: 339 16 Takahashi Y, Kihara H, Abe K. 2010, J. Thermophys.Heat Tr., 24: 31 17 Lee J H. 1993, J. Thermophys. Heat Tr., 7: 399 18 Bourdon A and Vervisch P. 1997, Phys. Rev. E, 55:4634 19 Kim M, Gülhan A and Boyd I D. 2012, J. Thermophys.Heat Tr., 26: 244 20 Devoto R S. 1967, Physics of Fluids, 10: 2105 21 Ghorui S and Das A K. 2013, Phys. Plasmas, 20:093504 22 Laricchiuta A, Bruno D, Capitelli M, et al. 2009, Eur.Phys. J. D, 54: 607 23 Yamada K, Miyatani S, Maeno H, et al. 2013, The development of 10 kW and Φ75 mm large diameter ICP heater. 57th Space Science and Technology Union Symposium, Yonago, Japan 24 Chapman S, Cowling T G. 1952, The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge 25 Yos J M. 1963, Transport properties of nitrogen, hydrogen oxygen and air to 30,000 K. TRAD-TM-63-7,Research and Advanced Development Division, AVCO Corp, USA 26 Gupta R, Yos J, Thompson R, et al. 1990, A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. NASA RP-1232, National Aeronautics and Space Administration, Washington, USA 27 Fertig M, Dohr A, Frühaufu H H. 1998, Transport coefficients for high-temperature nonequilibrium air flows. 7th AIAA/ASME Joint Thermophysics and Heat Transfer, Albuquerque, USA 28 Fertig M, Dohr A, Frühaufu H H. 2001, J. Thermophys. Heat Tr., 15: 148 29 Curtiss C F, Hirschfelder J O. 1949, J. Chem. Phys.,17: 550 30 Park C. 1990, Nonequilibrium Hypersonic Aerothermodynamics, Wiley, New York 31 Colombo V, Ghedini E. and Sanibondi P. 2008, Prog.Nucl. Energ., 50: 921 32 Capitelli M. 1973, Phys. Fluids, 16: 1835 33 Asinovsky E I, Kirillin A V, Pakhomov E P, et al. 1971,Proceedings of the Institute of Electrical and Electronics Engineers, 59: 592 34 Dunn M G and Kang S W. 1973, Theoretical and experimental studies of reentry plasma. NASA Contractor Report 2232, Cornell Aeronautical Laboratory Inc.Buffalo, New York, USA 35 Park C. 1990, Nonequilibrium Hypersonic Aerothermodynamics. Wiley, New York 36 Vincenti W G, and Kruger C H. 1965, Introduction to Physical Gas Dynamics. Krieger, Malabar 37 Shima E, Kitamaru K. 2011, AIAA J., 49: 1693 38 Kitamaru K, Shima E, Fujimoto K, et al. 2011, Commun. Comput. Phys., 10: 90 39 Leer B V. 1979, J. Comput. Phys., 32: 101 40 Bussing T R A, Murman E M. 1988, AIAA J., 26:1070 41 Jameson A, Yoon S. 1987, AIAA J., 25: 929 42 Yu M, Takahashi Y, Kihara H, et al. 2014, Plasma Sci.Technol., 16: 930 43 Miyatani S. 2014, Spectroscopic measurement of plasma flow generated by 10 kW and Φ75 mm ICP heater. 58th Space Science and Technology Union Symposium, JSASS-2014-4534, Nagasaki, Japan 44 Miyatani S, Yamada K and Abe T. 2015, Spectroscopic measurement of plasma flow generated by 10 kW and Φ75 mm ICP heater. 8th European Symposium on Aerothermodynamics for Space Vehicles, Lisbon, Portugal 45 Selle S and Riedel U. 1999, Annals of the New York Academy of Sciences, 891: 72
  • Related Articles

    [1]Xinyao CHENG, Huimin SONG, Shengfang HUANG, Yifei ZHU, Zhibo ZHANG, Zhenyang LI, Min JIA. Discharge and jet characteristics of gliding arc plasma igniter driven by pressure difference[J]. Plasma Science and Technology, 2022, 24(11): 115502. DOI: 10.1088/2058-6272/ac7af6
    [2]Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301
    [3]Siyin ZHOU (周思引), Xueke CHE (车学科), Wansheng NIE (聂万胜), Di WANG (王迪). Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process[J]. Plasma Science and Technology, 2018, 20(6): 65507-065507. DOI: 10.1088/2058-6272/aaac77
    [4]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [5]Xiuquan CAO (曹修全), Deping YU (余德平), Yong XIANG (向勇), Chao LI (李超), Hui JIANG (江汇), Jin YAO (姚进). Study on the ignition process of a segmented plasma torch[J]. Plasma Science and Technology, 2017, 19(7): 75404-075404. DOI: 10.1088/2058-6272/aa62f9
    [6]ZHENG Dianfeng (郑殿峰). The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation[J]. Plasma Science and Technology, 2016, 18(11): 1110-1115. DOI: 10.1088/1009-0630/18/11/09
    [7]DONG Yunsong (董云松), YANG Jiamin (杨家敏), SONG Tianming (宋天明), ZHU Tuo (朱托), HUANG Chengwu (黄成武). Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition[J]. Plasma Science and Technology, 2016, 18(4): 376-381. DOI: 10.1088/1009-0630/18/4/08
    [8]Asma BEGUM, Mounir LAROUSSI, M. R. PERVEZ. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil[J]. Plasma Science and Technology, 2013, 15(7): 627-634. DOI: 10.1088/1009-0630/15/7/05
    [9]Heinrich HORA, George H. MILEY, HE Xiantu, ZHENG Wudi, Paraskevas LALOUSIS, Istvan F?OLDES, Sandor SZATMARI, Stavros MOUSTAIZIS, Reynaldo CASTILLO. Ultrahigh Acceleration of Plasma Blocks by Nonlinear Forces for Side-On Laser Ignition of Solid Density Fusion Fuel[J]. Plasma Science and Technology, 2013, 15(5): 420-424. DOI: 10.1088/1009-0630/15/5/05
    [10]M. MAHDAVI, A. GHOLAMI. Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma[J]. Plasma Science and Technology, 2013, 15(4): 323-328. DOI: 10.1088/1009-0630/15/4/04

Catalog

    Article views (333) PDF downloads (1214) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return