Advanced Search+
Xinyao CHENG, Huimin SONG, Shengfang HUANG, Yifei ZHU, Zhibo ZHANG, Zhenyang LI, Min JIA. Discharge and jet characteristics of gliding arc plasma igniter driven by pressure difference[J]. Plasma Science and Technology, 2022, 24(11): 115502. DOI: 10.1088/2058-6272/ac7af6
Citation: Xinyao CHENG, Huimin SONG, Shengfang HUANG, Yifei ZHU, Zhibo ZHANG, Zhenyang LI, Min JIA. Discharge and jet characteristics of gliding arc plasma igniter driven by pressure difference[J]. Plasma Science and Technology, 2022, 24(11): 115502. DOI: 10.1088/2058-6272/ac7af6

Discharge and jet characteristics of gliding arc plasma igniter driven by pressure difference

More Information
  • Corresponding author:

    Huimin SONG, E-mail: min_cargi@sina.com

    Shengfang HUANG, E-mail: shengfanghuang@cardc.cn

  • Received Date: February 12, 2022
  • Revised Date: June 16, 2022
  • Accepted Date: June 20, 2022
  • Available Online: December 05, 2023
  • Published Date: August 21, 2022
  • Stable combustion in an afterburner can help increase the thrust of the engine in a short time, thereby improving the maneuverability of a fighter. To improve the ignition performance of an afterburner, a twin-duct ignition platform was designed to study the performance of a gliding arc plasma igniter in close-to-real afterburner conditions. The research was carried out by a combination of experiments and simulations. The working environment of the igniter was explored through a numerical simulation. The results showed that the airflow ejected from the radiating holes formed a swirling sheath, which increased the anti-interference ability of the airflow jet. The influence of the pressure difference between the inlet and outlet of the igniter (∆p), the flow rate outside the igniter outlet (W2), and the installation angle (α) on the single-cycle discharge energy (E) as well as the maximum arc length (L) were studied through experiments. Three stages were identified: the airflow breakdown stage, the arc evolution stage, and the arc fracture stage. E and L increased by 107.3% and 366.2%, respectively, with ∆p increasing from 10 to 70 Torr. The relationship between L and ∆p obtained by data fitting is L=3 - 2.47/(1 + (∆p/25)4). The relationship of L at different α is Lα=0° > (Lα=45° and Lα=135°) > Lα=180° > Lα=90°. E and L decrease by 18.2% and 37.3%, respectively, when ∆p=45 Torr and W2 is increased from 0 to 250 l min-1.

  • We would like to acknowledge the support and contributions from the rest of the faculties in the laboratory. This work was supported by National Science and Technology Major Project (No. 2017-Ⅲ-0007-0033).

  • [1]
    Ni A, Polifke W and Joos F 2000 Ignition delay time modulation as a contribution to thermo-acoustic instability in sequential combustion ASME Turbo Expo 2000: Power for Land, Sea, and Air (Munich: ASME)
    [2]
    Bloxsidge G J, Dowling A P and Langhorne P J 1988 J. Fluid Mech. 193 445 doi: 10.1017/S0022112088002216
    [3]
    Macquisten M A 1995 J. Sound Vib. 188 545 doi: 10.1006/jsvi.1995.0610
    [4]
    Cai Z, Wang T Y and Sun M B 2019 Acta Astronaut. 165 268 doi: 10.1016/j.actaastro.2019.09.016
    [5]
    Wei B et al 2020 Aerosp. Sci. Technol. 96 105584 doi: 10.1016/j.ast.2019.105584
    [6]
    Liu F et al 2019 Aerosp. Sci. Technol. 93 105330 doi: 10.1016/j.ast.2019.105330
    [7]
    Wu Z W et al 2020 Plasma Sci. Technol. 22 094014 doi: 10.1088/2058-6272/aba7ac
    [8]
    Fridman A et al 2008 J. Propul. Power 24 1216 doi: 10.2514/1.24795
    [9]
    Sun W T et al 2011 Proc. Combust. Inst. 33 3211 doi: 10.1016/j.proci.2010.06.148
    [10]
    Sun W T et al 2012 Combust. Flame 159 221 doi: 10.1016/j.combustflame.2011.07.008
    [11]
    Ju Y G and Sun W T 2015 Prog. Energy Combust. Sci. 48 21 doi: 10.1016/j.pecs.2014.12.002
    [12]
    Brande W T 1814 Philos. Trans. Roy. Soc. London 104 51 doi: 10.1098/rstl.1814.0005
    [13]
    Haselfoot C E and Kirkby P J 1904 Philos. Mag. 8 471 doi: 10.1080/14786440409463215
    [14]
    Bao A N et al 2005 On the mechanism of ignition of premixed CO–air and hydrocarbon–air flows by nonequilibrium RF plasma 43rd AIAA Aerospace Sciences Meeting and Exhibit (Reno) (AIAA)
    [15]
    Bao A N et al 2007 Methanol and ethanol ignition by repetively pulsed, nanosecond pulse duration plasma 45th AIAA Aerospace Sciences Meeting and Exhibit (Reno) (AIAA) (https://doi.org/10.2514/6.2007-1387)
    [16]
    Lou G F et al 2007 Proc. Combust. Inst. 31 3327 doi: 10.1016/j.proci.2006.07.126
    [17]
    Adamovich I et al 2006 Ignition of gaseous and liquid hydrocarbon fuels by repetitively pulsed, nanosecond pulse duration plasma 59th Annual Gaseous Electronics Conf. (Columbus, Ohio)
    [18]
    Czernichowski A 1994 Pure Appl. Chem. 66 1301 doi: 10.1351/pac199466061301
    [19]
    Lesueur H, Czernichowski A and Chapelle J 1990 North China Electric Power. Apparatus for generation of low temperature plasmas by the formation of gliding arc discharges
    [20]
    Du C M, Yan J H and Cheron B 2007 Plasma Sources Sci. Technol. 16 791 doi: 10.1088/0963-0252/16/4/014
    [21]
    Zhang H et al 2015 High Voltage Eng. 41 2930 (in Chinese)
    [22]
    Zhu J J et al 2014 J. Phys. D: Appl. Phys. 47 295203 doi: 10.1088/0022-3727/47/29/295203
    [23]
    Wang W Z et al 2017 Chem. Eng. J. 330 11 doi: 10.1016/j.cej.2017.07.133
    [24]
    Ramakers M et al 2017 ChemSusChem 10 2642 doi: 10.1002/cssc.201700589
    [25]
    Wang W Z et al 2016 Plasma Sources Sci. Technol. 25 065012 doi: 10.1088/0963-0252/25/6/065012
    [26]
    Zhu J J 2015 Optical diagnostics of non-thermal plasmas and plasma-assisted combustion PhD Thesis Lund University, Lund, Sweden
    [27]
    He L M et al 2015 High Voltage Eng. 41 2874 (in Chinese)
    [28]
    Matveev I B and Serbin S I 2010 IEEE Trans. Plasma Sci. 38 3306 doi: 10.1109/TPS.2010.2063713
    [29]
    Hu H B et al 2013 J. Ther. Sci. 22 275 doi: 10.1007/s11630-013-0624-z
    [30]
    Vincent-Randonnier A et al 2007 Plasma Sources Sci. Technol. 16 149 doi: 10.1088/0963-0252/16/1/020
    [31]
    Ombrello T et al 2006 AIAA J. 44 142 doi: 10.2514/1.17018
    [32]
    Ombrello T et al 2010 Combust. Flame 157 1916 doi: 10.1016/j.combustflame.2010.02.004
    [33]
    He L M et al 2019 Chin. J. Aeronaut. 32 337 doi: 10.1016/j.cja.2018.12.014
    [34]
    Zhong L et al 2011 High Voltage Appar. 47 80 (in Chinese)
    [35]
    Gao J L et al 2019 Proc. Combust. Inst. 37 5629 doi: 10.1016/j.proci.2018.06.030
    [36]
    Lin D et al 2021 J. Phys. D: Appl. Phys. 54 215205 doi: 10.1088/1361-6463/abe78c
    [37]
    Jia M et al 2021 Aerosp. Sci. Technol. 113 106726 doi: 10.1016/j.ast.2021.106726
    [38]
    Zhang C Y et al 2021 J. Solid Rocket Technol. 2 160 (in Chinese)
    [39]
    He L M et al 2015 High Voltage Eng. 41 2030 (in Chinese)
    [40]
    Liu P F et al 2016 High Voltage Eng. 42 836 (in Chinese)
    [41]
    Jia M et al 2022 Chin. J. Aeronaut. 35 116 doi: 10.1016/j.cja.2021.09.015
    [42]
    He L M et al 2017 High Voltage Eng. 43 3061 (in Chinese)
    [43]
    Fei L et al 2019 High Voltage Appar. 55 127 (in Chinese)
    [44]
    Zhao T L et al 2014 Phys. Plasmas 21 053507 doi: 10.1063/1.4876754
  • Related Articles

    [1]Min ZHU, Yuchen PING, Yinghao ZHANG, Chaohai ZHANG, Shuqun WU. Discharge and mass transfer characteristics of atmospheric pressure gas-solid two-phase gliding arc[J]. Plasma Science and Technology, 2024, 26(9): 094009. DOI: 10.1088/2058-6272/ad61a2
    [2]Shaohua QIN, Meizhi WANG, Jun DU, Lanlan NIE, Jie PAN. Effect of power supply parameters on discharge characteristics and sterilization efficiency of magnetically driven rotating gliding arc[J]. Plasma Science and Technology, 2024, 26(9): 094006. DOI: 10.1088/2058-6272/ad547d
    [3]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [4]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [5]Xiuquan CAO (曹修全), Deping YU (余德平), Yong XIANG (向勇), Chao LI (李超), Hui JIANG (江汇), Jin YAO (姚进). Study on the ignition process of a segmented plasma torch[J]. Plasma Science and Technology, 2017, 19(7): 75404-075404. DOI: 10.1088/2058-6272/aa62f9
    [6]Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3
    [7]ZHANG Hao (张浩), ZHU Fengsen (朱凤森), TU Xin (屠昕), BO Zheng (薄拯), CEN Kefa (岑可法), LI Xiaodong (李晓东). Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas[J]. Plasma Science and Technology, 2016, 18(5): 473-477. DOI: 10.1088/1009-0630/18/5/05
    [8]LI Hui (李辉), XIE Mingfeng (谢铭丰). Plasma Parameters of a Gliding Arc Jet at Atmospheric Pressure Obtained by a Line-Ratio Method[J]. Plasma Science and Technology, 2013, 15(8): 776-779. DOI: 10.1088/1009-0630/15/8/11
    [9]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [10]LI Hui (李辉), XIE Mingfeng(谢铭丰). Measurement of Plasma Parameters of Gliding Arc Driven by the Transverse Magnetic Field[J]. Plasma Science and Technology, 2012, 14(8): 712-715. DOI: 10.1088/1009-0630/14/8/06
  • Cited by

    Periodical cited type(5)

    1. Cheng, X., Song, H., Jia, M. et al. Experimental study on basic characteristics of high performance plasma jet actuator. International Journal of Hydrogen Energy, 2025. DOI:10.1016/j.ijhydene.2024.11.443
    2. Akhtar, M.S., Alicherif, M., Wang, B. et al. Effect of rotating gliding discharges on the lean blow-off limit of biogas flames. Plasma Science and Technology, 2024, 26(10): 105505. DOI:10.1088/2058-6272/ad5ec2
    3. Liu, X., Zhang, J., He, Y. et al. Gliding arc discharge in combination with Cu/Cu2O electrocatalysis for ammonia production. Plasma Science and Technology, 2024, 26(7): 075501. DOI:10.1088/2058-6272/ad2d10
    4. Zheng, Q., Li, L., Xue, Z. et al. Plasma Agricultural Nitrogen Fixation Using Clean Energies: New Attempt of Promoting PV Absorption in Rural Areas. Processes, 2023, 11(7): 2030. DOI:10.3390/pr11072030
    5. Li, Z., Zhu, Y., Pan, D. et al. Characterization of a Gliding Arc Igniter from an Equilibrium Stage to a Non–Equilibrium Stage Using a Coupled 3D–0D Approach. Processes, 2023, 11(3): 873. DOI:10.3390/pr11030873

    Other cited types(0)

Catalog

    Figures(18)

    Article views (96) PDF downloads (165) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return