Citation: | Xinyao CHENG, Huimin SONG, Shengfang HUANG, Yifei ZHU, Zhibo ZHANG, Zhenyang LI, Min JIA. Discharge and jet characteristics of gliding arc plasma igniter driven by pressure difference[J]. Plasma Science and Technology, 2022, 24(11): 115502. DOI: 10.1088/2058-6272/ac7af6 |
Stable combustion in an afterburner can help increase the thrust of the engine in a short time, thereby improving the maneuverability of a fighter. To improve the ignition performance of an afterburner, a twin-duct ignition platform was designed to study the performance of a gliding arc plasma igniter in close-to-real afterburner conditions. The research was carried out by a combination of experiments and simulations. The working environment of the igniter was explored through a numerical simulation. The results showed that the airflow ejected from the radiating holes formed a swirling sheath, which increased the anti-interference ability of the airflow jet. The influence of the pressure difference between the inlet and outlet of the igniter (∆p), the flow rate outside the igniter outlet (W2), and the installation angle (α) on the single-cycle discharge energy (E) as well as the maximum arc length (L) were studied through experiments. Three stages were identified: the airflow breakdown stage, the arc evolution stage, and the arc fracture stage. E and L increased by 107.3% and 366.2%, respectively, with ∆p increasing from 10 to 70 Torr. The relationship between L and ∆p obtained by data fitting is L=3 - 2.47/(1 + (∆p/25)4). The relationship of L at different α is Lα=0° > (Lα=45° and Lα=135°) > Lα=180° > Lα=90°. E and L decrease by 18.2% and 37.3%, respectively, when ∆p=45 Torr and W2 is increased from 0 to 250 l min-1.
We would like to acknowledge the support and contributions from the rest of the faculties in the laboratory. This work was supported by National Science and Technology Major Project (No. 2017-Ⅲ-0007-0033).
[1] |
Ni A, Polifke W and Joos F 2000 Ignition delay time modulation as a contribution to thermo-acoustic instability in sequential combustion ASME Turbo Expo 2000: Power for Land, Sea, and Air (Munich: ASME)
|
[2] |
Bloxsidge G J, Dowling A P and Langhorne P J 1988 J. Fluid Mech. 193 445 doi: 10.1017/S0022112088002216
|
[3] |
Macquisten M A 1995 J. Sound Vib. 188 545 doi: 10.1006/jsvi.1995.0610
|
[4] |
Cai Z, Wang T Y and Sun M B 2019 Acta Astronaut. 165 268 doi: 10.1016/j.actaastro.2019.09.016
|
[5] |
Wei B et al 2020 Aerosp. Sci. Technol. 96 105584 doi: 10.1016/j.ast.2019.105584
|
[6] |
Liu F et al 2019 Aerosp. Sci. Technol. 93 105330 doi: 10.1016/j.ast.2019.105330
|
[7] |
Wu Z W et al 2020 Plasma Sci. Technol. 22 094014 doi: 10.1088/2058-6272/aba7ac
|
[8] |
Fridman A et al 2008 J. Propul. Power 24 1216 doi: 10.2514/1.24795
|
[9] |
Sun W T et al 2011 Proc. Combust. Inst. 33 3211 doi: 10.1016/j.proci.2010.06.148
|
[10] |
Sun W T et al 2012 Combust. Flame 159 221 doi: 10.1016/j.combustflame.2011.07.008
|
[11] |
Ju Y G and Sun W T 2015 Prog. Energy Combust. Sci. 48 21 doi: 10.1016/j.pecs.2014.12.002
|
[12] |
Brande W T 1814 Philos. Trans. Roy. Soc. London 104 51 doi: 10.1098/rstl.1814.0005
|
[13] |
Haselfoot C E and Kirkby P J 1904 Philos. Mag. 8 471 doi: 10.1080/14786440409463215
|
[14] |
Bao A N et al 2005 On the mechanism of ignition of premixed CO–air and hydrocarbon–air flows by nonequilibrium RF plasma 43rd AIAA Aerospace Sciences Meeting and Exhibit (Reno) (AIAA)
|
[15] |
Bao A N et al 2007 Methanol and ethanol ignition by repetively pulsed, nanosecond pulse duration plasma 45th AIAA Aerospace Sciences Meeting and Exhibit (Reno) (AIAA) (https://doi.org/10.2514/6.2007-1387)
|
[16] |
Lou G F et al 2007 Proc. Combust. Inst. 31 3327 doi: 10.1016/j.proci.2006.07.126
|
[17] |
Adamovich I et al 2006 Ignition of gaseous and liquid hydrocarbon fuels by repetitively pulsed, nanosecond pulse duration plasma 59th Annual Gaseous Electronics Conf. (Columbus, Ohio)
|
[18] |
Czernichowski A 1994 Pure Appl. Chem. 66 1301 doi: 10.1351/pac199466061301
|
[19] |
Lesueur H, Czernichowski A and Chapelle J 1990 North China Electric Power. Apparatus for generation of low temperature plasmas by the formation of gliding arc discharges
|
[20] |
Du C M, Yan J H and Cheron B 2007 Plasma Sources Sci. Technol. 16 791 doi: 10.1088/0963-0252/16/4/014
|
[21] |
Zhang H et al 2015 High Voltage Eng. 41 2930 (in Chinese)
|
[22] |
Zhu J J et al 2014 J. Phys. D: Appl. Phys. 47 295203 doi: 10.1088/0022-3727/47/29/295203
|
[23] |
Wang W Z et al 2017 Chem. Eng. J. 330 11 doi: 10.1016/j.cej.2017.07.133
|
[24] |
Ramakers M et al 2017 ChemSusChem 10 2642 doi: 10.1002/cssc.201700589
|
[25] |
Wang W Z et al 2016 Plasma Sources Sci. Technol. 25 065012 doi: 10.1088/0963-0252/25/6/065012
|
[26] |
Zhu J J 2015 Optical diagnostics of non-thermal plasmas and plasma-assisted combustion PhD Thesis Lund University, Lund, Sweden
|
[27] |
He L M et al 2015 High Voltage Eng. 41 2874 (in Chinese)
|
[28] |
Matveev I B and Serbin S I 2010 IEEE Trans. Plasma Sci. 38 3306 doi: 10.1109/TPS.2010.2063713
|
[29] |
Hu H B et al 2013 J. Ther. Sci. 22 275 doi: 10.1007/s11630-013-0624-z
|
[30] |
Vincent-Randonnier A et al 2007 Plasma Sources Sci. Technol. 16 149 doi: 10.1088/0963-0252/16/1/020
|
[31] |
Ombrello T et al 2006 AIAA J. 44 142 doi: 10.2514/1.17018
|
[32] |
Ombrello T et al 2010 Combust. Flame 157 1916 doi: 10.1016/j.combustflame.2010.02.004
|
[33] |
He L M et al 2019 Chin. J. Aeronaut. 32 337 doi: 10.1016/j.cja.2018.12.014
|
[34] |
Zhong L et al 2011 High Voltage Appar. 47 80 (in Chinese)
|
[35] |
Gao J L et al 2019 Proc. Combust. Inst. 37 5629 doi: 10.1016/j.proci.2018.06.030
|
[36] |
Lin D et al 2021 J. Phys. D: Appl. Phys. 54 215205 doi: 10.1088/1361-6463/abe78c
|
[37] |
Jia M et al 2021 Aerosp. Sci. Technol. 113 106726 doi: 10.1016/j.ast.2021.106726
|
[38] |
Zhang C Y et al 2021 J. Solid Rocket Technol. 2 160 (in Chinese)
|
[39] |
He L M et al 2015 High Voltage Eng. 41 2030 (in Chinese)
|
[40] |
Liu P F et al 2016 High Voltage Eng. 42 836 (in Chinese)
|
[41] |
Jia M et al 2022 Chin. J. Aeronaut. 35 116 doi: 10.1016/j.cja.2021.09.015
|
[42] |
He L M et al 2017 High Voltage Eng. 43 3061 (in Chinese)
|
[43] |
Fei L et al 2019 High Voltage Appar. 55 127 (in Chinese)
|
[44] |
Zhao T L et al 2014 Phys. Plasmas 21 053507 doi: 10.1063/1.4876754
|
[1] | Min ZHU, Yuchen PING, Yinghao ZHANG, Chaohai ZHANG, Shuqun WU. Discharge and mass transfer characteristics of atmospheric pressure gas-solid two-phase gliding arc[J]. Plasma Science and Technology, 2024, 26(9): 094009. DOI: 10.1088/2058-6272/ad61a2 |
[2] | Shaohua QIN, Meizhi WANG, Jun DU, Lanlan NIE, Jie PAN. Effect of power supply parameters on discharge characteristics and sterilization efficiency of magnetically driven rotating gliding arc[J]. Plasma Science and Technology, 2024, 26(9): 094006. DOI: 10.1088/2058-6272/ad547d |
[3] | N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647 |
[4] | N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7 |
[5] | Xiuquan CAO (曹修全), Deping YU (余德平), Yong XIANG (向勇), Chao LI (李超), Hui JIANG (江汇), Jin YAO (姚进). Study on the ignition process of a segmented plasma torch[J]. Plasma Science and Technology, 2017, 19(7): 75404-075404. DOI: 10.1088/2058-6272/aa62f9 |
[6] | Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3 |
[7] | ZHANG Hao (张浩), ZHU Fengsen (朱凤森), TU Xin (屠昕), BO Zheng (薄拯), CEN Kefa (岑可法), LI Xiaodong (李晓东). Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas[J]. Plasma Science and Technology, 2016, 18(5): 473-477. DOI: 10.1088/1009-0630/18/5/05 |
[8] | LI Hui (李辉), XIE Mingfeng (谢铭丰). Plasma Parameters of a Gliding Arc Jet at Atmospheric Pressure Obtained by a Line-Ratio Method[J]. Plasma Science and Technology, 2013, 15(8): 776-779. DOI: 10.1088/1009-0630/15/8/11 |
[9] | HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13 |
[10] | LI Hui (李辉), XIE Mingfeng(谢铭丰). Measurement of Plasma Parameters of Gliding Arc Driven by the Transverse Magnetic Field[J]. Plasma Science and Technology, 2012, 14(8): 712-715. DOI: 10.1088/1009-0630/14/8/06 |
1. | Cheng, X., Song, H., Jia, M. et al. Experimental study on basic characteristics of high performance plasma jet actuator. International Journal of Hydrogen Energy, 2025. DOI:10.1016/j.ijhydene.2024.11.443 |
2. | Akhtar, M.S., Alicherif, M., Wang, B. et al. Effect of rotating gliding discharges on the lean blow-off limit of biogas flames. Plasma Science and Technology, 2024, 26(10): 105505. DOI:10.1088/2058-6272/ad5ec2 |
3. | Liu, X., Zhang, J., He, Y. et al. Gliding arc discharge in combination with Cu/Cu2O electrocatalysis for ammonia production. Plasma Science and Technology, 2024, 26(7): 075501. DOI:10.1088/2058-6272/ad2d10 |
4. | Zheng, Q., Li, L., Xue, Z. et al. Plasma Agricultural Nitrogen Fixation Using Clean Energies: New Attempt of Promoting PV Absorption in Rural Areas. Processes, 2023, 11(7): 2030. DOI:10.3390/pr11072030 |
5. | Li, Z., Zhu, Y., Pan, D. et al. Characterization of a Gliding Arc Igniter from an Equilibrium Stage to a Non–Equilibrium Stage Using a Coupled 3D–0D Approach. Processes, 2023, 11(3): 873. DOI:10.3390/pr11030873 |