Advanced Search+
LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
Citation: LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11

Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant

Funds: supported by National Natural Science Foundation of China (No. 10905049) and Fundamental Research Funds for the Central Universities of China (Nos. 53200859165, 2562010050)
More Information
  • Received Date: October 25, 2015
  • The surface shape of liquid water is well controlled during nanosecond pulse laser ablation plasma propulsion. In this study, we measured the effect of the shape on the coupling coefficient and the specific impulse. We found that the coupling coefficient and specific impulse could be optimized by varying the surface convexity. Based on the analysis of the surface radius curvature, we demonstrate that the convex surface changes the laser focal positions to achieve high efficiency.
  • 1 Kantrowitz A. 1972, Astr. Aero., 10: 74 2 Phipps C R, Baker K L, Libby S B, et al. 2012, Adv.Space Res., 49: 1283 3 Zheng Z Y, Gao H, Gao L, et al. 2014, Appl. Phys. A,115: 1439 4 Xue Y T, Dou Z G, Ye J F, et al. 2014, High Power Laser Part. Beams, 26: 101020 5 Zheng Z Y, Gao L, Gao H, et al. 2014, Appl. Phys. A,117: 1577 6 Yabe T, Phipps C, Yamaguchi M, et al. 2002, Appl.Phys. Lett., 80: 4318 7 Fardel R, Urech L, Lippert T, et al. 2009, Appl. Phys.A, 94: 657 8 Zheng Z Y, Gao H, Fan Z J, et al. 2014, Plasma Science and Technology, 16: 251 9 Zhang Y, Lu X, Zheng Z Y, et al. 2008, Appl. Phys.A, 91: 357 10 Zheng Z Y, Fan Z J, Wang S W, et al. 2012, Chin.Phys. Lett., 29: 095205 11 Choi S, Han T, Gojani A B, et al. 2010, Appl. Phys.A, 98: 147 12 Zheng Z Y, Zhang J, Hao Z Q, et al. 2006, Chin. Phys.,15: 580 13 Zheng Z Y, Fan Z J, Xing J, et al. 2012, High Power Laser Part. Beams, 24: 2669 14 Zheng Z Y, Zhang J, Zhang Y, et al. 2006, Appl. Phys.A, 85: 441 15 Chen J, Qian H, Han B, et al. 2013, Optik, 124: 1650 16 Phipps C R, Luke J R, Lippert T, et al. 2003, Appl.Phys. A, 77: 193
  • Related Articles

    [1]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [2]H ASHRAF, S Z A SHAH, H I A QAZI, M A KHAN, S HUSSAIN, M A BADAR, S NIAZ, M SHAFIQ. Electrical features of radio-frequency atmospheric pressure helium discharge with and without dielectric electrodes[J]. Plasma Science and Technology, 2019, 21(2): 25403-025403. DOI: 10.1088/2058-6272/aaede1
    [3]Zheng ZHANG (张政), Xueke CHE (车学科), Wangsheng NIE (聂万胜), Jinlong LI (李金龙), Tikai ZHENG (郑体凯), Liang LI (李亮), Qinya CHEN (陈庆亚), Zhi ZHENG (郑直). Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion[J]. Plasma Science and Technology, 2018, 20(1): 14006-014006. DOI: 10.1088/2058-6272/aa8e95
    [4]Shuangyan XU (徐双艳), Jinsheng CAI (蔡晋生), Yongsheng LIAN (练永生). Investigation of nanosecond-pulsed dielectric barrier discharge actuators with powered electrodes of different exposures[J]. Plasma Science and Technology, 2017, 19(9): 95504-095504. DOI: 10.1088/2058-6272/aa6f59
    [5]ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09
    [6]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [7]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [8]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [9]LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17
    [10]SONG Xinxin (宋新新), TAN Zhenyu (谭震宇), CHEN Bo (陈波), ZHANG Yuantao (张远涛), LI Qingquan (李清泉). Evolution of the pulse width in dielectric barrier atmospheric pressure discharge[J]. Plasma Science and Technology, 2012, 14(9): 808-812. DOI: 10.1088/1009-0630/14/9/07

Catalog

    Article views (375) PDF downloads (636) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return