Advanced Search+
ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
Citation: ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06

Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion

Funds:  supported by National Natural Science Foundation of China (No.10905049) and Fundamental Research Funds for the Central Universities of China (Nos.2562011256, 2562010050)
More Information
  • Received Date: April 03, 2014
  • Acoustic waves generated in nanosecond pulsed-laser ablation of a solid target in both air and water-confined environments were measured experimentally. It was found that the amplitude of the acoustic wave tended to decrease with an increase in water thickness. The waves were analyzed by means of fast Fourier transform. It was shown that there are several frequency components in the acoustic waves with the dominant frequency shifting from high frequency to low frequency as the thickness of the water layer increases. Furthermore, strong acoustic pressure led to enhancement of the coupling of the laser energy to the target in laser plasma propulsion.
  • 1 Berthe L, Sollier A, Peyre P, et al. 2000, J. Phys. D:Appl. Phys., 33: 2142
    2 Wu B X, Shin Y C. 2005, J. Appl. Phys., 97: 113517
    3 Berthe L, Fabbro R, Peyre P, et al. 1997, J. Appl.Phys., 82: 2826
    4 Brujan F A and Vogel A. 2006, Journal of Fluid Mechanics, 558: 281
    5 Kazakevich P V, Voronov V V, Simakin A V, et al.2004, Quantum Electron., 34: 951
    6 Choo K L, Ogawa Y, Kanbargi G, et al. 2004, Meter.Sci. Eng. A, 372: 145
    7 Zheng Z Y, Zhang J, Zhang Y, et al. 2006, Appl. Phys.A, 85: 441
    8 Zhang Y, Lu X, Zheng Z Y, et al. 2008, Appl. Phys.A, 91: 357
    9 Wang X Y, Wang J A, Zong S G, et al. 2013, High Power Laser and Particle Beams, 25: 1639 (in Chinese)
    10 Wang Y H, Wang J A and Wu R H. 2009, High Power Laser and Particle Beams, 21: 998 (in Chinese)
    11 Li S Y, Rao D H, Shen Z H, et al. 2010, Acta Photonica Sinica, 39: 2263 (in Chinese)
    12 Kang H W, Lee H and Welch A J. 2008, J. Appl. Phys.103: 083101
    13 Huang B, Zhang Y L, Zhang D, et al. 2010, Chin. Phys.B, 19: 054302
    14 Hosten B and Castaings M. 2005, J. Acoust. Soc. Am.,117: 1108
    15 Bulanov A V, Nagornyi I G and Sosedko E V. 2013,Technical Physics, 58: 1201
    16 Sun H X, Xu B Q, Zhang H, et al. 2011, Chin. Phys.B, 20: 014302
    17 Zhu S, Lu Y F and Hong M H. 2001, Appl. Phys. Lett.,79: 1396
    18 Zheng Z Y, Fan Z J, Wang S W, et al. 2012, Chin.Phys. Lett., 29: 095205
    19 Zhang Y, Lu X, Zhou M L, et al. 2011, Chin. Phys. B,20: 087901
  • Related Articles

    [1]Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
    [2]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [3]Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa
    [4]Nader MORSHEDIAN. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)[J]. Plasma Science and Technology, 2017, 19(9): 95501-095501. DOI: 10.1088/2058-6272/aa74c5
    [5]Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1
    [6]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [7]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [8]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01
    [9]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [10]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02

Catalog

    Article views (346) PDF downloads (1373) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return