Advanced Search+
Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa
Citation: Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa

Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser

Funds: This work was supported by National Natural Science Foundation of China (Grant Nos. 10905049, 51472224) and Fundamental Research Funds for the Central Universities (Grant Nos. 53200859165 and 2562010050).
More Information
  • Received Date: November 15, 2017
  • The ablation characteristics of carbon-doped glycerol were investigated in laser plasma propulsion using a pulse laser with 10 ns pulse width and 1064 nm wavelength. The results showed that with the incident laser intensity increasing, the target momentum decreased. Results still indicated that the strong plasma shielded the consumption loss and resulted in a low coupling coefficient. Furthermore, the carbon-doping gave rise to variations in the laser focal position and laser intensity, which in turn reduced the glycerol splashing. Based on the glycerol viscosity and the carbon doping, a high specific impulse is anticipated.
  • [1]
    Phipps C R et al 2012 Adv. Space Res. 49 1283
    [2]
    Phipps C R 2014 Acta Astronaut. 93 418
    [3]
    Ye J F et al 2011 Chin. Opt. 4 319 (in Chinese)
    [4]
    Kudryashov S I et al 2011 Appl. Phys. Lett. 98 254102
    [5]
    Bulgakova N M et al 2011 Appl. Surf. Sci. 257 10876
    [6]
    Kudryashov S I, Lyon K and Allen S D 2006 J. Appl. Phys. 100 124908
    [7]
    Lorazo P, Lewis L J and Meunier M 2006 Phys. Rev. B 73 134108
    [8]
    Zheng Z Y et al 2014 Appl. Phys. A 115 1439
    [9]
    Zheng Z Y et al 2006 Appl. Phys. A 83 329
    [10]
    Ahmad M R et al 2015 Laser Phys. Lett. 12 056101
    [11]
    Mazzi A, Gorrini F and Miotello A 2017 Appl. Surf. Sci. 418 601
    [12]
    Xue Y T et al 2014 High Power Laser Part. Beams 26 101020 (in Chinese)
    [13]
    Jamil Y et al 2013 Appl. Phys. A 110 207
    [14]
    Zheng Z Y et al 2012 Chin. Phys. Lett. 29 095202
    [15]
    Fardel R et al 2009 Appl. Phys. A 94 657
    [16]
    Zhang Y et al 2008 Appl. Phys. A 91 357
    [17]
    Zheng Z Y et al 2006 Chin. Phys. 15 580
    [18]
    Choi S et al 2010 Appl. Phys. A 98 147
    [19]
    Luke J R, Phipps C R and McDuff G G 2003 Appl. Phys. A 77 343
    [20]
    Zheng Z Y et al 2016 Chin. Phys. B 25 045204
    [21]
    Phipps C R et al 2004 Appl. Phys. A 79 1385
    [22]
    Phipps C R Jr et al 1988 J. Appl. Phys. 64 1083
    [23]
    Phipps C R et al 1990 Laser Part. Beams 8 281
  • Related Articles

    [1]Aigerim TAZHEN, Merlan DOSBOLAYEV, Tlekkabul RAMAZANOV. Investigation of self-generated magnetic field and dynamics of a pulsed plasma flow[J]. Plasma Science and Technology, 2022, 24(5): 055403. DOI: 10.1088/2058-6272/ac5018
    [2]Qianyu ZHOU (周乾宇), Liqing TONG (童立青), Kefu LIU (刘克富). Research of magnetic self-balance used in a repetitive high voltage rectangular waveform pulse adder[J]. Plasma Science and Technology, 2018, 20(1): 14007-014007. DOI: 10.1088/2058-6272/aa8e93
    [3]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [4]WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04
    [5]HU Guanghai (胡广海), JIN Xiaoli (金晓丽), YUAN Lin (袁林), ZHANG Qiaofeng (张乔枫), XIE Jinlin (谢锦林), LI Hong (李弘), LIU Wandong (刘万东). Oxide Coated Cathode Plasma Source of Linear Magnetized Plasma Device[J]. Plasma Science and Technology, 2016, 18(9): 918-923. DOI: 10.1088/1009-0630/18/9/08
    [6]WANG Xiaoyu (王晓玉), FAN Yuwei (樊玉伟). Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator[J]. Plasma Science and Technology, 2015, 17(10): 893-896. DOI: 10.1088/1009-0630/16/17/10/14
    [7]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [8]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [9]ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05
    [10]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
  • Cited by

    Periodical cited type(6)

    1. Li, Y., Ou, Y., Wu, J. et al. Experimental Investigation on Plume Characteristics of PTFE-Filled Carbon, Graphite, Graphene for Laser-Assisted Pulsed Plasma Thruster. Applied Sciences (Switzerland), 2023, 13(16): 9283. DOI:10.3390/app13169283
    2. Li, Y., Ou, Y., Wu, J. et al. Dynamic simulation on laser-metal interaction in laser ablation propulsion considering moving interface, finite thermal wave transfer, and phase explosion. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2023.03.039
    3. Peng, Z., Li, Z., Song, F. et al. Ion Electric Propulsion System Electric Breakdown Problems: Causes, Impacts and Protection Strategies. IEEE Access, 2023. DOI:10.1109/ACCESS.2023.3312719
    4. Xu, Y., Yang, L., Zhou, D. et al. Experimental study on the dynamics and parameters of nanosecond laser-induced aluminum plasma. Journal of Physics D: Applied Physics, 2022, 55(32): 325201. DOI:10.1088/1361-6463/ac6a27
    5. Ou, Y., Wu, J., Zhang, Y. et al. A predictive model for macro-performances applied to laser-assisted pulsed plasma thrusters. Physics of Plasmas, 2022, 29(1): 013506. DOI:10.1063/5.0073678
    6. Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101. DOI:10.1088/2058-6272/ac22f7

    Other cited types(0)

Catalog

    Article views (241) PDF downloads (373) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return