Advanced Search+
Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa
Citation: Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa

Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser

Funds: This work was supported by National Natural Science Foundation of China (Grant Nos. 10905049, 51472224) and Fundamental Research Funds for the Central Universities (Grant Nos. 53200859165 and 2562010050).
More Information
  • Received Date: November 15, 2017
  • The ablation characteristics of carbon-doped glycerol were investigated in laser plasma propulsion using a pulse laser with 10 ns pulse width and 1064 nm wavelength. The results showed that with the incident laser intensity increasing, the target momentum decreased. Results still indicated that the strong plasma shielded the consumption loss and resulted in a low coupling coefficient. Furthermore, the carbon-doping gave rise to variations in the laser focal position and laser intensity, which in turn reduced the glycerol splashing. Based on the glycerol viscosity and the carbon doping, a high specific impulse is anticipated.
  • [1]
    Phipps C R et al 2012 Adv. Space Res. 49 1283
    [2]
    Phipps C R 2014 Acta Astronaut. 93 418
    [3]
    Ye J F et al 2011 Chin. Opt. 4 319 (in Chinese)
    [4]
    Kudryashov S I et al 2011 Appl. Phys. Lett. 98 254102
    [5]
    Bulgakova N M et al 2011 Appl. Surf. Sci. 257 10876
    [6]
    Kudryashov S I, Lyon K and Allen S D 2006 J. Appl. Phys. 100 124908
    [7]
    Lorazo P, Lewis L J and Meunier M 2006 Phys. Rev. B 73 134108
    [8]
    Zheng Z Y et al 2014 Appl. Phys. A 115 1439
    [9]
    Zheng Z Y et al 2006 Appl. Phys. A 83 329
    [10]
    Ahmad M R et al 2015 Laser Phys. Lett. 12 056101
    [11]
    Mazzi A, Gorrini F and Miotello A 2017 Appl. Surf. Sci. 418 601
    [12]
    Xue Y T et al 2014 High Power Laser Part. Beams 26 101020 (in Chinese)
    [13]
    Jamil Y et al 2013 Appl. Phys. A 110 207
    [14]
    Zheng Z Y et al 2012 Chin. Phys. Lett. 29 095202
    [15]
    Fardel R et al 2009 Appl. Phys. A 94 657
    [16]
    Zhang Y et al 2008 Appl. Phys. A 91 357
    [17]
    Zheng Z Y et al 2006 Chin. Phys. 15 580
    [18]
    Choi S et al 2010 Appl. Phys. A 98 147
    [19]
    Luke J R, Phipps C R and McDuff G G 2003 Appl. Phys. A 77 343
    [20]
    Zheng Z Y et al 2016 Chin. Phys. B 25 045204
    [21]
    Phipps C R et al 2004 Appl. Phys. A 79 1385
    [22]
    Phipps C R Jr et al 1988 J. Appl. Phys. 64 1083
    [23]
    Phipps C R et al 1990 Laser Part. Beams 8 281
  • Related Articles

    [1]Jiali CHEN (陈佳丽), Peiyu JI (季佩宇), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). The properties of N-doped diamond-like carbon films prepared by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2019, 21(2): 25502-025502. DOI: 10.1088/2058-6272/aaee90
    [2]Nader MORSHEDIAN. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)[J]. Plasma Science and Technology, 2017, 19(9): 95501-095501. DOI: 10.1088/2058-6272/aa74c5
    [3]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [4]ZHANG Lei (张磊), FENG Chunlei (冯春雷), XIAO Qingmei (肖青梅), HAI Ran (海然), DING Hongbin (丁洪斌). Characterization of Carbon Plasma Evolution Using Laser Ablation TOF Mass Spectrometry[J]. Plasma Science and Technology, 2015, 17(11): 958-963. DOI: 10.1088/1009-0630/17/11/13
    [5]LI Hailing(李海玲), WANG Qing(王庆), BA Dechun(巴德纯). Helium Plasma Damage of Low-k Carbon Doped Silica Film: the Effect of Si Dangling Bonds on the Dielectric Constant[J]. Plasma Science and Technology, 2014, 16(11): 1050-1053. DOI: 10.1088/1009-0630/16/11/09
    [6]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [7]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [8]M. HANIF, M. SALIK, M. A. BAIG. Diagnostic Study of an Fe-Ni Alloy Plasma Generated by the Fundamental (1064 nm) and Second (532 nm) Harmonics of an Nd: YAG Laser[J]. Plasma Science and Technology, 2013, 15(5): 397-402. DOI: 10.1088/1009-0630/15/5/01
    [9]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02
    [10]M. HANIF, M. SALIK, M. A. BAIG. Spectroscopic Studies of the Laser Produced Lead Plasma[J]. Plasma Science and Technology, 2011, 13(2): 129-134.

Catalog

    Article views (241) PDF downloads (373) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return