Advanced Search+
WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
Citation: WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03

Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor

Funds: supported by National Natural Science Foundation of China (Nos. 11175178 and 11375196) and the National Magnetic Confinement Fusion Science Program of China (No. 2014GB113000)
More Information
  • Received Date: January 27, 2016
  • The fusion performance and particle confinement of an international thermonuclear experimental reactor (ITER)-like fusion device have been modeled by numerically solving the energy transport equation and the particle transport equation. The effect of fuelling depth has been investigated. The plasma is primarily heated by the fusion produced alpha particles and the loss process of particles and energy in the scrape-off layer has been taken into account. To study the effect of fuelling depth on fusion performance, the ITERH-98P(y,2) scaling law has been used to evaluate the transport coefficients. It is shown that the particle con?nement and fusion performance are significantly dependent on the fuelling depth. Deviation of 10% of the minor radius on fuelling depth can make the particle confinement change by ~61% and the fusion performance change by ~108%. The enhancement of fusion performance is due to the better particle con?nement induced by deeper particle fuelling.
  • 1 ITER Physics Basis Editors, ITER Physics Expert Group Chairs and Co-Charis, ITER Joint Central Team and Physics Integration Unit. 1999, Nuclear Fusion, 39: 2137 2 ITER Physics Expert Groups on Confinement and Transport and Conˉnement Modelling and Database, ITER Physics Basis Editors. 1999, Nuclear Fusion, 39:2175 3 ITER Engineering Design Activities. 2002, ITER Technical Basis. Vienna: IAEA, ITER EDA Documentation Series No. 24 4 Shimada M, Campbell D J, Mukhovatov V, et al. 2007,Nuclear Fusion, 47: S1 5 Doyle E J, Houlberg W A, Kamada Y, et al. 2007,Nuclear Fusion, 47: S18 6 Sips A C C, Giruzzi G, Ide S, et al. 2015, Physics of Plasmas, 22: 021804 7 Wang S,Wang S. 2015, Physics of Plasmas, 22: 042501 8 Rebut P H, Bickerton R J, Keen B E. 1985, Nuclear Fusion, 25: 1011 9 ITER Physics Expert Group on Divertor, ITER Physics Expert Group on Divertor Modelling and Database, ITER Physics Basis Editors. 1999, Nuclear Fusion, 39: 2391 10 Loarte A, Lipschultz B, Kukushkin A S, et al. 2007,Nuclear Fusion, 47: S203 11 Takenaga H, Nagashima K, Asakura N, et al. 1997,Nuclear Fusion, 37: 1295 12 Takenaga H, Asakura N, Shimizu K, et al. 1997,Journal of Nuclear Materials, 241{243: 569 13 Takenaga H, Nagashima K, Sakasai A, et al. 1999,Nuclear Fusion, 39: 1917 14 Shirakata H. 1991, Fusion Engineering and Design, 14:7 15 Becker G. 2004, Nuclear Fusion, 44: 933 16 Becker G, Kardaun O. 2007, Nuclear Fusion, 47: 33 17 Becker G. 1999, Nuclear Fusion, 39: 95 18 Becker G. 1995, Nuclear Fusion, 35: 39 19 Pereverzev G, Angioni C, Peeters A G, et al. 2005,Nuclear Fusion, 45: 221 20 Baker D R, Rosenbluth M N. 1998, Physics of Plasmas,5: 2936
  • Related Articles

    [1]Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9
    [2]H L SWAMI, C DANANI, A K SHAW. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations[J]. Plasma Science and Technology, 2018, 20(6): 65602-065602. DOI: 10.1088/2058-6272/aaabb4
    [3]Kai ZHAO (赵凯), Feng LI (李锋), Baigang SUN (孙佰刚), Hongyu YANG (杨宏宇), Tao ZHOU (周韬), Ruizhi SUN (孙睿智). Numerical and experimental investigation of plasma plume deflection with MHD flow control[J]. Plasma Science and Technology, 2018, 20(6): 65511-065511. DOI: 10.1088/2058-6272/aab2a4
    [4]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [5]MIAO Feng (苗峰), ZHENG Xianjun (曾宪俊), DENG Baiquan (邓柏权), LIU Wei (刘伟), OU Wei (欧巍), HUANG Yi (黄毅). Magnetic Inertial Confinement Fusion (MICF)[J]. Plasma Science and Technology, 2016, 18(11): 1055-1063. DOI: 10.1088/1009-0630/18/11/01
    [6]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [7]ZHENG Borui (郑博睿), GAO Chao (高超), LI Yibin (李一滨), LIU Feng (刘锋), LUO Shijun (罗时钧). Flow Control over a Conical Forebody by Periodic Pulsed Plasma Actuation[J]. Plasma Science and Technology, 2013, 15(4): 350-356. DOI: 10.1088/1009-0630/15/4/08
    [8]YANG Hui (杨晖), LI Feng(李锋), SONG Yaoying(宋耀颖), SUN Baigang(孙佰刚). Numerical Investigation of Electrohydrodynamic (EHD) Flow Control in an S-shaped Duct[J]. Plasma Science and Technology, 2012, 14(10): 897-904. DOI: 10.1088/1009-0630/14/10/08
    [9]ZHENG Borui (郑博睿), GAO Chao(高超), LI Yibin(李一滨), LIU Feng(刘峰), LUO Shijun(罗时钧. Flow Control over a Conical Forebody by Duty-Cycle Actuations[J]. Plasma Science and Technology, 2012, 14(1): 58-63. DOI: 10.1088/1009-0630/14/1/13
    [10]SUN Baigang, LI Feng, ZHANG Shanshan, WANG Jingyu, ZHANG Lijuan, ZHAO Erlei. Numerical Investigation of Plasma Active Flow Control[J]. Plasma Science and Technology, 2010, 12(6): 723-728.

Catalog

    Article views (290) PDF downloads (677) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return