Advanced Search+
S. CORNISH, J. KHACHAN. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun[J]. Plasma Science and Technology, 2016, 18(2): 138-142. DOI: 10.1088/1009-0630/18/2/07
Citation: S. CORNISH, J. KHACHAN. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun[J]. Plasma Science and Technology, 2016, 18(2): 138-142. DOI: 10.1088/1009-0630/18/2/07

The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun

Funds: supported by the Framework of the “Broader Approach Internationals Agreement”
More Information
  • Received Date: January 18, 2015
  • A new and simple type of electron gun is presented. Unlike conventional electron guns, which require a heated filament or extractor, accelerator and focusing electrodes, this gun uses the collimated electron microchannels of an inertial electrostatic con?nement (IEC) discharge to achieve the same outcome. A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge. Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode. This geometry isolates one of the microchannels that emerge in a nega?tively biased IEC grid. The internal operating pressure range of the gun is 35-190 mTorr. A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differen?tial. The chamber was operated at pressures of 4-12 mTorr. The measured current produced by the gun was 0.1-3 mA (0.2-14 mA corrected measurement) for discharge currents of 1-45 mA and discharge voltages of 0.5-12 kV. The collimated electron beam emerges from the aperture into the vacuum chamber. The performance of the gun is una?ected by the pressure differential between the vacuum chamber and the gun. This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required.
  • 1 Seely S, by Samuel Seely. 1958, Electron-Tube Circuits. McGraw-Hill, New York 2 Schultz H. 1994, Electron Beam Welding. Elsevier 3 Burdovitsin V A, Zhirkov I S, Oks E M, et al. 2005,Instrum. Exp. Tech., 6: 66 4 Osipov I, Rempe N. 2000, Rev. Sci. Instrum., 71: 1638 5 Burdovitsin V A, Oks E M. 1999, Rev. Sci. Instrum.,70: 2975 6 Fu W, Yan Y, Li X, et al. 2010, Appl. Phys. Lett., 96:071502 7 Shemyakin A, Kuznetsov G, Sery A, et al. 2003, Laser Part Beams., 21: 123 8 Grusdev V A, Zalesski V G, Antonovich D A, et al.2005, Vacuum, 77: 399 9 Oks E M, Schanin P M. 1999, Phys. Plasmas, 6: 1649 10 Denbnovetsky S, Melnyk V, Melnyk I. 2003, IEEE Trans. Plasma Sci., 31: 987 11 Hirsch R L. 1967, J. Appl. Phys., 38: 4522 12 Farnsworth P T. 1966, Electric discharge device for producing interactions between nuclei. US Patent 3,258,402 13 Khachan J. 2001, Phys. Plasmas, 8: 1299 14 Khachan J, Moore D, Bosi S. 2003, Phys. Plasmas, 10:596 15 Shrier O, Khachan J, Bosi S, et al. 2006, Phys. Plasmas, 13: 012703 16 Kipritidis J, Fitzgerald M, Khachan J. 2007, J. Physics D: Appl. Physics, 40: 5170 17 Kornilov S Y, Osipov I V, Rempe N G. 2009, Instrum.Exp. Tech., 52: 406 18 Burdovitsin V A, Oks E M. 2008, Laser Part Beams,26: 619 19 Gushenets V I, Oks E M, Yushkov G Y, et al. 2003,Laser Part Beams, 21: 123 20 Krokmhal A, Gleizer J Z, Krasik Y E, et al. 2003, J.Appl. Phys., 94: 55
  • Related Articles

    [1]Reza SAFARI, Farshad SOHBATZADEH. Effect of methane content and the oscillating electric field between electrodes on atmospheric Ar/methane plasma jet and DLC coating deposition[J]. Plasma Science and Technology, 2020, 22(8): 85401-085401. DOI: 10.1088/2058-6272/ab8550
    [2]Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f
    [3]Kefeng SHANG (商克峰), Jie LI (李杰), Rino MORENT. Hybrid electric discharge plasma technologies for water decontamination: a short review[J]. Plasma Science and Technology, 2019, 21(4): 43001-043001. DOI: 10.1088/2058-6272/aafbc6
    [4]Ahmed Rida GALALY, Guido VAN OOST. Fast inactivation of microbes and degradation of organic compounds dissolved in water by thermal plasma[J]. Plasma Science and Technology, 2018, 20(8): 85504-085504. DOI: 10.1088/2058-6272/aac1b7
    [5]Li ZHANG (张丽), Dezheng YANG (杨德正), Sen WANG (王森), Wenchun WANG (王文春). Spatiotemporal characteristics of nanosecond pulsed discharge in an extremely asymmetric electric field at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64006-064006. DOI: 10.1088/2058-6272/aa632d
    [6]WANG Xiaoping(王小平), LI Zhongjian(李中坚), ZHANG Xingwang(张兴旺), LEI Lecheng(雷乐成). Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment[J]. Plasma Science and Technology, 2014, 16(5): 479-485. DOI: 10.1088/1009-0630/16/5/07
    [7]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [8]LIU Wenzheng(刘文正), WANG Hao(王浩), DOU Zhijun(窦志军). Impact of the Insulator on the Electric Field and Generation Characteristics of Vacuum Arc Metal Plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. DOI: 10.1088/1009-0630/16/2/09
    [9]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [10]ZHU Linan (朱丽楠), WANG Yongjun (王永军), REN Zhijun (任芝军), LIU Guifang (刘桂芳), et al.. The Degradation of Organic Pollutants by Bubble Discharge in Water[J]. Plasma Science and Technology, 2013, 15(10): 1053-1058. DOI: 10.1088/1009-0630/15/10/17

Catalog

    Article views (435) PDF downloads (1307) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return