Advanced Search+
ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
Citation: ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01

The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice

More Information
  • Received Date: May 10, 2015
  • In this paper, under two different electromagnetic modes, the photonic band gaps (PBGs) in the two-dimensional plasma photonic crystals (PPCs) are theoretically investigated based on the plane wave expansion method. The proposed PPCs are arranged in rhombus lattices, in which the homogeneous unmagnetized plasma rods are immersed in the isotropic dielectric background. The computed results showed that PBGs can be easily tuned by the angle of rhombus lattices, and a cutoff frequency and a flatbands region can be observed under the TM and TE polarized waves, respectively. The relationships between the relative bandwidths of first PBGs and the parameters of PPCs in two such cases also are discussed. The numerical simulations showed that the PBGs can be manipulated obviously by the parameters as mentioned above. The proposed results can be used to design the waveguide and filter based on the PPCs.
  • 1 John S. 1987, Phys. Rev. Lett., 58: 2486 2 Yablonovitch E. 1987, Phys. Rev. Lett., 58: 2059 3 Willke B, Uehara N, Gustafson E K, et al. 1998, Optics Letters, 23: 1704 4 Johnson S G, Villeneuve P R, Fan S, et al. 2000, Phys.Rev. B, 62: 8212 5 EI-Kady I, Taha M M R, Su M F. 2006, Appl. Phys.Lett., 88: 253109 6 Chutinan A, John S, Toader O. 2003, Phys. Rev. Lett.,90: 123901 7 Joannopoulos J J, Meade R D, Winn J N. 1995, Photonic Crystals: Molding the Flow of Light. Princeton University Press, New Jersey 8 Hojo H, Mase A. 2004, J. Plasma Fusion Research, 80:89 9 Ginzberg V L. 1970, The Propagation of Electromagnetic Waves in Plasmas. Oxford, Pergamon, New York 10 Guo B, Peng Li, Qiu X. 2013, Plasma Sci. Technol.,15: 609 11 Sakai O, Tachibana K. 2012, Plasma Sources Sci. Technol., 21: 013001 12 Zhang H F, Liu S B, Kong X K, et al. 2012, Phys.Plasmas, 19: 022103 13 Shiveshwari L, Mahto P. 2006, Solid State Commun.,138: 160 14 Ghasempour Ardakani A. 2014, J. Opt. Soc. Am. B,31: 332 15 Qi L. 2012, J. Appl. Phys., 111: 073301 16 Zhang H F, Liu S B, Kong X K, et al. 2013, Opt.Commun., 288: 82 17 Qi L, Yang Z, Fu T. 2012, Phys. Plasmas, 19: 012509 18 Zhang H F, Liu S B, Kong X K. 2013, J. Lightwave Technol., 31: 1694 19 Zhang H F, Liu S B, Kong X K. 2013, J. Electromagn.Wave Appl., 27: 1776 20 Zhang H F, Liu S B, Kong X K. 2013, J. Electromagn.Wave Appl., 27: 1276 21 Zhang H F, Liu S B, Jiang Y C. 2014, Phys. Plasmas,21: 092104 22 Feng L, Liu X P, Ren J, et al. 2005, J. Appl. Phys., 9:073104 23 Takeda H, Takashima T, Yoshino K. 2004, Journal of Physics: Condensed Matter, 16: 6317 24 Li Z Y, Gu B Y, Yang G Z. 1998, Phys. Rev. Lett.,81: 2574 25 Zhang H F, Ding D G, Li H M, et al. 2015, Phys.Plasmas, 22: 022105 26 Qi L, Zhang Z Q, Gao X. 2009, J. Electromagn. Wave Appl., 22: 1155 27 Wu Z, Xie K, Yang H. 2012, Optik, 123: 534 28 Kuzmiak V, Maradudin A A. 1997, Phys. Rev. B, 55:7427 29 Kuzmiak V, Maradudin A A. 1998, Phys. Rev. B, 58:7230 30 Sakai O, Sakaguchi T, Tachibana K. 2007, J. Appl.Phys., 101: 073304 31 Zhang H F, Liu S B, Kong X K, et al. 2011, J. Appl.Phys., 110: 026104 32 Qiu M, He S L. 2000, J. Opt. Soc. Am. B, 17: 1027 33 Qi L, Yang Z. 2009, Prog. Electromagn. Res., 91: 319 34 Sakai K, Miyai E, Noda S. 2006, Appl. Phys. Lett., 89:021101

Catalog

    Article views (381) PDF downloads (698) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return