Advanced Search+
ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
Citation: ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01

The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice

More Information
  • Received Date: May 10, 2015
  • In this paper, under two different electromagnetic modes, the photonic band gaps (PBGs) in the two-dimensional plasma photonic crystals (PPCs) are theoretically investigated based on the plane wave expansion method. The proposed PPCs are arranged in rhombus lattices, in which the homogeneous unmagnetized plasma rods are immersed in the isotropic dielectric background. The computed results showed that PBGs can be easily tuned by the angle of rhombus lattices, and a cutoff frequency and a flatbands region can be observed under the TM and TE polarized waves, respectively. The relationships between the relative bandwidths of first PBGs and the parameters of PPCs in two such cases also are discussed. The numerical simulations showed that the PBGs can be manipulated obviously by the parameters as mentioned above. The proposed results can be used to design the waveguide and filter based on the PPCs.
  • 1 John S. 1987, Phys. Rev. Lett., 58: 2486 2 Yablonovitch E. 1987, Phys. Rev. Lett., 58: 2059 3 Willke B, Uehara N, Gustafson E K, et al. 1998, Optics Letters, 23: 1704 4 Johnson S G, Villeneuve P R, Fan S, et al. 2000, Phys.Rev. B, 62: 8212 5 EI-Kady I, Taha M M R, Su M F. 2006, Appl. Phys.Lett., 88: 253109 6 Chutinan A, John S, Toader O. 2003, Phys. Rev. Lett.,90: 123901 7 Joannopoulos J J, Meade R D, Winn J N. 1995, Photonic Crystals: Molding the Flow of Light. Princeton University Press, New Jersey 8 Hojo H, Mase A. 2004, J. Plasma Fusion Research, 80:89 9 Ginzberg V L. 1970, The Propagation of Electromagnetic Waves in Plasmas. Oxford, Pergamon, New York 10 Guo B, Peng Li, Qiu X. 2013, Plasma Sci. Technol.,15: 609 11 Sakai O, Tachibana K. 2012, Plasma Sources Sci. Technol., 21: 013001 12 Zhang H F, Liu S B, Kong X K, et al. 2012, Phys.Plasmas, 19: 022103 13 Shiveshwari L, Mahto P. 2006, Solid State Commun.,138: 160 14 Ghasempour Ardakani A. 2014, J. Opt. Soc. Am. B,31: 332 15 Qi L. 2012, J. Appl. Phys., 111: 073301 16 Zhang H F, Liu S B, Kong X K, et al. 2013, Opt.Commun., 288: 82 17 Qi L, Yang Z, Fu T. 2012, Phys. Plasmas, 19: 012509 18 Zhang H F, Liu S B, Kong X K. 2013, J. Lightwave Technol., 31: 1694 19 Zhang H F, Liu S B, Kong X K. 2013, J. Electromagn.Wave Appl., 27: 1776 20 Zhang H F, Liu S B, Kong X K. 2013, J. Electromagn.Wave Appl., 27: 1276 21 Zhang H F, Liu S B, Jiang Y C. 2014, Phys. Plasmas,21: 092104 22 Feng L, Liu X P, Ren J, et al. 2005, J. Appl. Phys., 9:073104 23 Takeda H, Takashima T, Yoshino K. 2004, Journal of Physics: Condensed Matter, 16: 6317 24 Li Z Y, Gu B Y, Yang G Z. 1998, Phys. Rev. Lett.,81: 2574 25 Zhang H F, Ding D G, Li H M, et al. 2015, Phys.Plasmas, 22: 022105 26 Qi L, Zhang Z Q, Gao X. 2009, J. Electromagn. Wave Appl., 22: 1155 27 Wu Z, Xie K, Yang H. 2012, Optik, 123: 534 28 Kuzmiak V, Maradudin A A. 1997, Phys. Rev. B, 55:7427 29 Kuzmiak V, Maradudin A A. 1998, Phys. Rev. B, 58:7230 30 Sakai O, Sakaguchi T, Tachibana K. 2007, J. Appl.Phys., 101: 073304 31 Zhang H F, Liu S B, Kong X K, et al. 2011, J. Appl.Phys., 110: 026104 32 Qiu M, He S L. 2000, J. Opt. Soc. Am. B, 17: 1027 33 Qi L, Yang Z. 2009, Prog. Electromagn. Res., 91: 319 34 Sakai K, Miyai E, Noda S. 2006, Appl. Phys. Lett., 89:021101
  • Related Articles

    [1]Jian YANG (杨健), Ruiyang XU (许睿飏), Angjian WU (吴昂键), Xiaodong LI (李晓东), Li LI (李澧), Wangjun SHEN (沈望俊), Jianhua YAN (严建华). Co-synthesis of vertical graphene nanosheets and high-value gases using inductively coupled plasma enhanced chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(12): 125503. DOI: 10.1088/2058-6272/aacda4
    [2]Haifeng ZHANG (章海锋), Hao ZHANG (张浩). The features of band structures for woodpile three-dimensional photonic crystals with plasma and function dielectric constituents[J]. Plasma Science and Technology, 2018, 20(10): 105001. DOI: 10.1088/2058-6272/aacf87
    [3]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79
    [4]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [5]GAO Huanzhong (高欢忠), HE Long (何龙), HE Zhijiang (何志江), LI Zebin (李泽斌), et al.. Work Function Enhancement of Indium Tin Oxide via Oxygen Plasma Immersion Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 791-793. DOI: 10.1088/1009-0630/15/8/14
    [6]I. M. ULANOV, M. V. ISUPOV, A. Yu LITVINSEV, P. A. MISCHENKO. Plasma-Chemical Synthesis of Oxide Powders Using Transformer-Coupled Discharge[J]. Plasma Science and Technology, 2013, 15(4): 386-390. DOI: 10.1088/1009-0630/15/4/14
    [7]F. JAN, A. W. KHAN, A. SAEED, M. ZAKAULLAH. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2013, 15(4): 329-334. DOI: 10.1088/1009-0630/15/4/05
    [8]ZHU Lingyu (祝令瑜), JI Shengchang (汲胜昌), HUI Sisi (惠思思), GUO Jun (郭俊), LI Yansong (李岩松), FU Chenzhao (傅晨钊). Application of Excitation Function to the Prediction of RI Level Caused by Corona Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1091-1098. DOI: 10.1088/1009-0630/14/12/10
    [9]ZHENG Yanbin (郑艳彬), LI Guang (李光), WANG Wenlong (王文龙), LI Xiuchang (李秀昌), JIANG Zhigang(姜志刚). Dry Etching Characteristics of Amorphous Indium-Gallium-Zinc-Oxide Thin Films[J]. Plasma Science and Technology, 2012, 14(10): 915-918. DOI: 10.1088/1009-0630/14/10/11
    [10]T. WATARI, Y. HAMADA. Linear Gyro-Kinetic Response Function for Zonal Flows[J]. Plasma Science and Technology, 2011, 13(2): 157-161.

Catalog

    Article views (381) PDF downloads (698) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return