Advanced Search+
OU Wei (欧巍), DENG Baiquan (邓柏权), ZENG Xianjun (曾宪俊), GOU Fujun (芶富均), XUE Xiaoyan (薛晓艳), ZHANG Weiwei (张卫卫), CAO Xiaogang (曹小岗), YANG Dangxiao (杨党校), CAO Zhi (曹智). Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma[J]. Plasma Science and Technology, 2016, 18(6): 627-633. DOI: 10.1088/1009-0630/18/6/08
Citation: OU Wei (欧巍), DENG Baiquan (邓柏权), ZENG Xianjun (曾宪俊), GOU Fujun (芶富均), XUE Xiaoyan (薛晓艳), ZHANG Weiwei (张卫卫), CAO Xiaogang (曹小岗), YANG Dangxiao (杨党校), CAO Zhi (曹智). Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma[J]. Plasma Science and Technology, 2016, 18(6): 627-633. DOI: 10.1088/1009-0630/18/6/08

Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma

Funds: supported by the International Thermonuclear Experimental Reactor (ITER) Program Special of Ministry of Science and Technology (No. 2013GB114003), and National Natural Science Foundation of China (Nos. 11275135, 11475122)
More Information
  • Received Date: May 14, 2015
  • A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber, instead of the previous copper chambers, to provide better diagnostic observation and access to the plasma optical emission. The cathode chamber cooling scheme is also modi?ed to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path. A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas, which have been investigated by utilizing optical emission spectroscopy (OES) and Langmuir probe. In the experiments, discharge currents from 50 A to 100 A, argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen. The results show: (a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as ηˉ∝ˉj-0.63369 and the power dissipated in the arc has a strong relation with the filling factor; (b) through the quartz, the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm, which are the emissions of Ar+-434.81 nm and Ar+-442.60 nm line, and the intensities are increasing with the arc current and decreasing with the inlet argon flow rate; and (c) the electron density and temperature can reach 2.0 × 1019 m-3 and 0.48 eV, respectively, under the conditions of an arc current of 90 A and a magnetic field of 0.2 T. The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments.
  • 1 Rapp J, Koppers W R, van Eck H J N and van Rooij G J. 2010, Fusion Eng. Des., 85: 1455 2 van Rooij G J, Al R S, Brezinsek S, et al. 2007, Carbon erosion experiments in the ITER relevant flux regime. 34th EPS Conference on Plasma Physics, Warsaw 3 Kaufmann M and Neu R. 2007, Fusion Eng. Des., 82:521 4 Causey R A and Walsh D S. 1998, J. Nucl. Mater.,254: 84 5 Deng B Q, Li Z X, Li C Y, et al. 2011, Nucl. Fusion,51: 073041 6 Ou W, Zheng X J, Gou F J, et al. 2015, Nucl. Fusion,55: 043015 7 Xiao W W, Zou X L, Ding X T, et al. 2010, Phys. Rev.Lett., 104: 215001 8 Zhong W L, Shi Z B, Zou X L, et al. 2011, Rev. Sci.Instrum., 82: 103508 9 Duan Y M, Hu L Q, Mao S T, et al. 2012, Rev. Sci.Instrum., 83: 093501 10 Zhang X, Yuan Y, Xie X F, et al. 2013, Rev. Sci. Instrum., 84: 033506 11 Li E Z, Hu L Q, Ling B L, et al. 2010, Rev. Sci. Instrum., 81: 073506 12 Shen B, Sun Y W, Wan B N, et al. 2007, Rev. Sci.Instrum., 78: 093501 13 Takashima T, Ohta M, Shimizu M. 1978, Rev. Sci.Instrum., 49: 194 14 Giacomelli L, Zimbal A, Tittelmeier K, et al. 2011,Rev. Sci. Instrum., 82: 123504 15 Wright G M, Kleyn A W, Alves E, et al. 2009, J. Nucl.Mater., 390-391: 610 16 van Rooij G J, Westerhout J, Brezinsek S, et al. 2011,J. Nucl. Mater., 415: S137 17 Temmerman G De, van den Berg M A, Scholten J,et al. 2013, Fusion Eng. Des., 88: 483 18 Goebel D M, Campbell G, Conn R W. 1984, J. Nucl.Mater., 121: 277 19 Ye M Y, Takamura S, Ohno N. 1997, J. Nucl. Mater.,241-243: 1243 20 Ezumi N, Nishijima D, Kojima H, et al. 1999, J. Nucl.Mater., 266: 337 21 Vijvers W A J, van Gils C A J, Goedheer W J, et al.2008, Phys. Plasmas, 15: 093507 22 Vijvers W A J, de Groot B, Al R S, et al. 2009, Fusion Eng. Des., 84: 1933 23 Peerenboom K S C, van Dijk J, Goedheer W J, et al.2014, Plasma Sources Sci. Technol., 23: 025003 24 Matlock T S, Goebel D M, Conversano R, et al. 2014,Plasma Sources Sci. Technol., 23: 025014 25 Blackwell B D, Caneses J F and Samuell C M R, et al.2014, Plasma Sources Sci. Technol., 21: 055033 26 Takahashi K, Sato D, Takaki K, et al. 2013, Plasma Sources Sci. Technol., 22: 055002 27 Cao X, Chen S, Zhang W, et al. 2014, Fusion Eng.Des., 89: 2919 28 Cao X, Ou W, Tian S, et al. 2014, Fusion Eng. Des.,89: 2864 29 Cao X, Xia Yuxi, Chen Bingzhou, et al. 2015, Plasma Sci. Technol., 17: 20 30 Veremiyenko V. 2006, An ITER-relevant Magnetised Hydrogen Plasma Jet [Ph.D]. Eindhoven University of Technology, the Netherlands 31 Dahiya R P, de Graaf M J, Swelsen R J, et al. 1994,Phys. Plasmas, 1: 2086 32 Crintea D L, Czarnetzki U, Iordanova S, et al. 2009,J. Phys. D: Appl. Phys., 42: 45208
  • Related Articles

    [1]Wei JIANG, Hao WU, Zhijiang WANG, Lin YI, Ya ZHANG. Gas breakdown in radio-frequency field within MHz range: a review of the state of the art[J]. Plasma Science and Technology, 2022, 24(12): 124018. DOI: 10.1088/2058-6272/aca648
    [2]Xiaoxi DUAN (段晓溪), Benqiong LIU (刘本琼), Huige ZHANG (张惠鸽), Ben LI (李犇), Jiting OUYANG (欧阳吉庭). Various patterns in dielectric barrier glow discharges simulated by a dynamic model[J]. Plasma Science and Technology, 2019, 21(8): 85401-085401. DOI: 10.1088/2058-6272/ab0d51
    [3]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [4]Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1
    [5]XIN Qing (辛青), LI Zhongjian (李中坚), LEI Lecheng (雷乐成), YANG Bin (杨彬). Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process[J]. Plasma Science and Technology, 2016, 18(9): 943-949. DOI: 10.1088/1009-0630/18/9/11
    [6]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [7]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [8]ZHENG Jinxing (郑金星), SONG Yuntao (宋云涛), HUANG Xiongyi (黄雄一), LU Kun (陆坤), XI Weibin (奚维斌), DING Kaizhon (丁开忠), YE Bin (叶斌), NIU Erwu (牛二武). Experimental Study on Paschen Tests of ITER Current Lead Insulation[J]. Plasma Science and Technology, 2013, 15(2): 152-156. DOI: 10.1088/1009-0630/15/2/15
    [9]WENG Ming (翁明), XU Weijun (徐伟军). The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube[J]. Plasma Science and Technology, 2012, 14(11): 1024-1029. DOI: 10.1088/1009-0630/14/11/12
    [10]WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.

Catalog

    Article views (307) PDF downloads (733) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return