Advanced Search+
SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02
Citation: SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02

Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak

Funds: supported by the National Magnetic Confinement Fusion Science Programs of China (Nos. 2013GB104002, 2013GB107002, 2014GB107001) and National Natural Science Foundation of China (Nos. 11475058, 11475057, 11261140326, 11405049)
More Information
  • Received Date: September 29, 2015
  • A multichannel microwave interferometer system has been developed on the HL-2A tokomak. Its working frequency is well designed to avoid the fringe jump effect. Taking the structure of HL-2A into account, its antennas are installed in the horizontal direction, i.e. one launcher in high ?eld side (HFS) and four receivers in low field side (LFS). The fan-shaped measurement area covers those regions where the magnetohydrodynamics (MHD) instabilities are active. The heterodyne technique contributes to its high temporal resolution (1 µs). It is possible for the multichannel system to realize simultaneous measurements of density and its fluctuation. The quadrature phase detection based on the zero-crossing method is introduced to density measurement. With this system, reliable line-averaged densities and density profiles are obtained. The location of the saturated internal kink mode can be figured out from the mode showing different intensities on four channels, and the result agrees well with that measured by electron cyclotron emission imaging (ECEI).
  • 1 Hole M J, Appel L C and Martin R. 2009, Rev. Sci.Instrum., 80: 123507 2 Jiang M, Shi Z B, Che S, et al. 2013, Rev. Sci. Instrum.,84: 113501 3 Zhang S B, Gao X, Ling B L, et al. 2014, Plasma Sci.Technol., 16: 311 4 Zhong W L, Shi Z B, Huang X L, et al. 2014, Rev. Sci.Instrum., 85: 013507 5 Laviron C, Donne A J H, Manso M E, et al. 1996,Plasma Phys. Control. Fusion, 38: 905 6 Mazzucato E. 1998, Rev. Sci. Instrum., 69: 2201 7 Prentice R, Edlington T, Smith R T C, et al. 1995, Rev.Sci. Instrum., 66: 1154 8 James R A, Nilson D G, Stever R D, et al. 1995, Rev.Sci. Instrum., 66: 422 9 Yoshikawa M, Shima Y, Matsumoto T, et al. 2006, Rev.Sci. Instrum., 77: 10E906 10 Emami M, Rasouli H. 2004, Meas. Sci. Technol., 15:1000 11 Hartfuss H J, Geist T, Hirsh M. 1997, Plasma Phys.Control. Fusion, 39: 1693 12 Hacquin S, Alper B, Sharapov S, et al. 2006, Nucl. Fusion, 46: S714 13 Ejiri A, Shinohara K, Kawahata K, et al. 1997, Plasma Phys. Control. Fusion, 39: 1963 14 Vershkov V A, Borisov M A, Subbotin G F, et al. 2013,Nucl. Fusion, 53: 083014 15 Cho Y T, Na S J. 2005, Meas. Sci. Technol., 16: 878 16 Zhou Y, Deng Z C, Liu Z T, et al. 2007, Rev. Sci. Instrum., 78: 113503 17 Deng W, Liu Yi, Wang X Q, et al. 2014, Nucl. Fusion,54: 013010 18 Chen W, Ding X T, Liu Yi, et al. 2009, Nucl. Fusion,49: 075022 19 Chen W, Ding X T, Liu Yi, et al. 2010, Nucl. Fusion,50: 084008 20 Yu L M, Ding X T, Chen W, et al. 2013, Nucl. Fusion,53: 053002 21 Chapman I T, Hua M D, Priches S D, et al. 2010, Nucl.Fusion, 50: 045007 22 Zhang R B, Wang X Q, Xiao C J, et al. 2014, Plasma Phys. Control. Fusion, 56: 095007
  • Related Articles

    [1]Min YANG, Kaixuan QI, Jiuwen YANG, Sa JIA, Haoyan LIU, Yanyang CHEN, Jin LI, Xiaoping LI. The multi-peak point phenomenon of broadband microwave reflection caused by inhomogeneous plasma[J]. Plasma Science and Technology, 2024, 26(7): 075001. DOI: 10.1088/2058-6272/ad34ba
    [2]Yu MA(马宇), Hao ZHANG(张浩), Haifeng ZHANG(章海锋), Ting LIU(刘婷), Wenyu LI(李文煜). Nonreciprocal properties of 1D magnetized plasma photonic crystals with the Fibonacci sequence[J]. Plasma Science and Technology, 2019, 21(1): 15001-015001. DOI: 10.1088/2058-6272/aade85
    [3]Haifeng ZHANG (章海锋), Hao ZHANG (张浩). The features of band structures for woodpile three-dimensional photonic crystals with plasma and function dielectric constituents[J]. Plasma Science and Technology, 2018, 20(10): 105001. DOI: 10.1088/2058-6272/aacf87
    [4]Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8
    [5]LI Yonggao (李永高), ZHOU Yan (周艳), YUAN Baoshan (袁保山), DENG Zhongchao (邓中朝), ZHANG Boyu (张博宇), LI Yuan (李远), DENG Wei (邓玮), WANG Haoxi (王浩西), YI Jiang (易江), HL-A Team. Application of the Magnetic Surface Based PARK-Matrix Method in the HCOOH Laser Interferometry System on HL-2A[J]. Plasma Science and Technology, 2016, 18(12): 1198-1203. DOI: 10.1088/1009-0630/18/12/10
    [6]ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
    [7]QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02
    [8]GUO Bin (郭斌), PENG Li (彭莉), QIU Xiaoming (邱孝明). Tunability of One-Dimensional Plasma Photonic Crystals with an External Magnetic Field[J]. Plasma Science and Technology, 2013, 15(7): 609-613. DOI: 10.1088/1009-0630/15/7/01
    [9]S. PRASAD, Vivek SINGH, A. K. SINGH. Properties of Ternary One Dimensional Plasma Photomic Crystals for an Obliquely Incident Electromagnetic Wave Considering the E®ect of Collisions in Plasma Layers[J]. Plasma Science and Technology, 2012, 14(12): 1084-1090. DOI: 10.1088/1009-0630/14/12/09
    [10]Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396.

Catalog

    Article views (384) PDF downloads (758) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return