Advanced Search+
ZHANG Pengfei(张鹏飞), ZHANG Guogang(张国钢), DONG Jinlong(董金龙), LIU Wanying(刘婉莹), GENG Yingsan(耿英三). Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs[J]. Plasma Science and Technology, 2014, 16(7): 661-668. DOI: 10.1088/1009-0630/16/7/06
Citation: ZHANG Pengfei(张鹏飞), ZHANG Guogang(张国钢), DONG Jinlong(董金龙), LIU Wanying(刘婉莹), GENG Yingsan(耿英三). Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs[J]. Plasma Science and Technology, 2014, 16(7): 661-668. DOI: 10.1088/1009-0630/16/7/06

Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

Funds: supported by the Fundamental Research Funds for the Central Universities of China (XJJ2011019)
More Information
  • Received Date: August 05, 2013
  • In current investigations of electric arc plasmas, experiments based on modern test- ing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non- intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visual- ization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc.
  • 1.Freton P, Gonzalez J J. 2009, The Open Physics Journal, 2: 105
    2 Mutzke A, Ruther T, Lindmayer M, et al. 2010, Eur.Phys. J. Appl. Phys., 49: 22910
    3 Wu Y, Rong M, Sun Z, et al. 2007, Plasma Science and Technology, 9: 649
    4 Sekikawa J, Kubono T. 2004, IEEE Trans. Electron., E87-C(8): 1342
    5 Lindmayer M, Paulke J. 1998, Manuf. Tech., 21: 33
    6 McBride J W, Balestrero A, Ghezzi L. 2010, Rev. Sci. Instrum., 81: 055109
    7 Li X, Chen D, Liu H, et al. 2007, Plasma Science and Technology, 9: 657
    8 Hong D, Sandolache G, Bauchire J. 2005, IEEE Trans. Plasma Sci., 33: 976
    9 Hu H, Chen W, Zhang J, et al. 2012, Plasma Science and Technology, 14: 257
    10 Takeuchim M, Kubono T. 1999, IEEE Trans. Elec-tron., E82-C(1): 41
    11 Toumazet J P, Brdys, Laurent A, et al. 2008, IEEE Trans. Plasma Sci., 36: 1036
    12 Toumazet J P, Brdys C, Laurent A, et al. 2005, IEEE Trans. Meas. Sci. Technol., 16: 1525
    13 Brdys C, Toumazet J P, Velleaud G, et al. 1999, IEEE Trans. Plasma Sci., 27: 595
    14 Cajal D, Laurrent A, Gary F, et al. 1999, Appl. Phys., 32: 1130
    15 Brdys C, Toumazet J P, Laurent A, et al. 2002, Meas. Sci. Tech., 13: 1146
    16 Kabanikhin S I. 2008, Journal of Inverse and Ill-posed Problems, 16: 317
    17 Lnadi G. 2008, Computational Optimization and Ap-plications, 39: 347
    18 Deng Y, Zeng Z, Tamburrino A, et al. 2007, Inter-national Journal of Applied Electromagnetic and Me-chanics, 25: 357
    19 Agalidi Y, Kozhukhar P, Levyi S, et al. 2012, Nonde-strutive Testing and Evaluation, 27: 109
    20 Lin Z W, Zhu J, Cochrane J W. 2004, IEEE Transac-tions on Applied Superconductivity, 14: 1959
    21 Jooss C, Albrecht J, Kuhn H, et al. 2002, Rep. Prog. Phys., 65: 651
    22 Wijngaarden R J, Griessen T, Fendrich J, et al. 1997, Phys. Tev. B, Condens. Matter, 55: 3268
    23 Zeng Z, Liu X, Deng Y, et al. 2006, IEEE Transactions on Magnetics, 42: 3737
    24 Drouet M G, Beaudet R, Jutras R. 1975, AIAA Jour-nal, 13: 929
    25.Xu T J, Rong M Z, Wu Y, et al. 2009, IEEE Trans. Plasma Sci., 37: 1311
  • Related Articles

    [1]Yaroslav MURZAEV, Gennadii LIZIAKIN, Andrey GAVRIKOV, Rinat TIMIRKHANOV, Valentin SMIRNOV. A comparison of emissive and cold floating probe techniques for electric potential measurements in rf inductive discharge[J]. Plasma Science and Technology, 2019, 21(4): 45401-045401. DOI: 10.1088/2058-6272/aaf250
    [2]Chundong HU (胡纯栋), Yahong XIE (谢亚红), Yongjian XU (许永建), Caichao JIANG (蒋才超), Jianglong WEI (韦江龙), Yuming GU (顾玉明), Qinglong CUI (崔庆龙), Lizhen LIANG (梁立振), Shiyong CHEN (陈世勇), Yuanlai XIE (谢远来). Achievement of 1000 s plasma generation of RF source for neutral beam injector[J]. Plasma Science and Technology, 2019, 21(2): 22001-022001. DOI: 10.1088/2058-6272/aaf1e0
    [3]Chenfan YU (余晨帆), Xin ZHOU (周鑫), Dianzheng WANG (王殿政), Neuyen VAN LINH, Wei LIU (刘伟). Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders[J]. Plasma Science and Technology, 2018, 20(1): 14019-014019. DOI: 10.1088/2058-6272/aa8e94
    [4]Vadym PRYSIAZHNYI, Pavel SLAVICEK, Eliska MIKMEKOVA, Milos KLIMA. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil[J]. Plasma Science and Technology, 2016, 18(4): 430-437. DOI: 10.1088/1009-0630/18/4/17
    [5]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [6]CHEN Jiale (陈佳乐), GAO Zhe (高喆). Tokamak Plasma Flows Induced by Local RF Forces[J]. Plasma Science and Technology, 2015, 17(10): 809-816. DOI: 10.1088/1009-0630/17/10/01
    [7]Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
    [8]WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
    [9]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [10]WANG Shuai(王帅), XU Xiang(徐翔), WANG Younian(王友年). A One-Dimensional Hybrid Simulation of DC/RF Combined Driven Capacitive Plasma[J]. Plasma Science and Technology, 2012, 14(1): 32-36. DOI: 10.1088/1009-0630/14/1/08

Catalog

    Article views (355) PDF downloads (920) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return