Advanced Search+
Yaroslav MURZAEV, Gennadii LIZIAKIN, Andrey GAVRIKOV, Rinat TIMIRKHANOV, Valentin SMIRNOV. A comparison of emissive and cold floating probe techniques for electric potential measurements in rf inductive discharge[J]. Plasma Science and Technology, 2019, 21(4): 45401-045401. DOI: 10.1088/2058-6272/aaf250
Citation: Yaroslav MURZAEV, Gennadii LIZIAKIN, Andrey GAVRIKOV, Rinat TIMIRKHANOV, Valentin SMIRNOV. A comparison of emissive and cold floating probe techniques for electric potential measurements in rf inductive discharge[J]. Plasma Science and Technology, 2019, 21(4): 45401-045401. DOI: 10.1088/2058-6272/aaf250

A comparison of emissive and cold floating probe techniques for electric potential measurements in rf inductive discharge

Funds: This work was supported by the Russian Science Foundation (project No. 14-29-00231).
More Information
  • Received Date: July 31, 2018
  • A cold floating probe method was compared with the emissive floating probe method in terms of a low-pressure radio-frequency inductive discharge. The dependences of difference between the plasma potential and the floating potential on the electron temperature 1–8 eV, plasma density 109 –1012 cm−3 and magnetic field 100–650 G were obtained. It was demonstrated that the difference between the potentials that obtained by these two methods can differ significantly from the expected value of 5.2 kTe/e for argon.
  • [1]
    Ohkawa T and Miller R L 2002 Phys. Plasmas 9 5116
    [2]
    Freeman R et al 2003 AIP Conf. Proc. 694 403
    [3]
    Dolgolenko D A and Muromkin Y A 2017 Phys.—Usp. 60 994
    [4]
    Timofeev A V 2014 Phys.—Usp. 57 990
    [5]
    Smirnov V P et al 2013 Plasma Phys. Rep. 39 456
    [6]
    Vorona N A et al 2015 Phys. At. Nucl. 78 1624
    [7]
    Liziakin G et al 2017 AIP Adv. 7 125108
    [8]
    Bekhtenev A A et al 1980 Nucl. Fusion 20 579
    [9]
    Shinohara S, Matsuoka N and Matsuyama S 2001 Phys. Plasmas 8 1154
    [10]
    Thomas E et al 2002 Phys. Plasmas 9 3154
    [11]
    DuBois A M et al 2013 Phys. Rev. Lett. 111 145002
    [12]
    Liu Y et al 2017 Geophys. Res. Lett. 44 1634
    [13]
    Walkden N R et al 2015 Rev. Sci. Instrum. 86 023510
    [14]
    Mamedov N V et al 2018 Tech. Phys. 63 1129
    [15]
    Mamedov N V et al 2018 AIP Conf. Proc. 2011 090003
    [16]
    Gavrilenko V P 2006 Instrum. Exp. Tech. 49 149
    [17]
    Hershkowitz N 1989 How langmuir probes work ed O Auciello and D L Flamm Plasma Diagnostics vol 113 (Amsterdam: Elsevier)
    [18]
    Liziakin G D et al 2016 Phys. Plasmas 23 123502
    [19]
    Maggs J E, Carter T A and Taylor R J 2007 Phys. Plasmas 14 052507
    [20]
    Baker D A, Hammel J E and Ribe F L 1961 Phys. Fluids 4 1534
    [21]
    Soldatkina E I, Bagryansky P A and Solomakhin A L 2008 Plasma Phys. Rep. 34 259
    [22]
    Schrittwieser R et al 2002 Plasma Phys. Control. Fusion 44 567
    [23]
    Sheehan J P and Hershkowitz N 2011 Plasma Sources Sci. Technol. 20 063001
    [24]
    Ye M Y and Takamura S 2000 Phys. Plasmas 7 3457
    [25]
    Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press)
    [26]
    Chen F F 2003 Lecture notes on Langmuir probe diagnostics Mini-Course on Plasma Diagnostics, IEEE-ICOPS Meeting Jeju (Korea: IEEE-ICOPS)
    [27]
    Hutchinson I H 2002 Plasma Phys. Control. Fusion 44 2603
    [28]
    Kemp R F and Sellen J M 1966 Rev. Sci. Instrum. 37 455
    [29]
    Chen F F and Decker C D 1992 Plasma Phys. Control. Fusion 34 635
    [30]
    Molvik A W, Ellingboe A R and Rognlien T D 1997 Phys. Rev. Lett. 79 233
    [31]
    Ellingboe A R et al 1995 Phys. Plasmas 2 1807
    [32]
    Stangeby P C 1995 Plasma Phys. Control. Fusion 37 1031
    [33]
    Chen F F 2012 Plasma Sources Sci. Technol. 21 055013
  • Related Articles

    [1]Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b
    [2]Shuichi SATO, Hiromu KAWANA, Tatsushi FUJIMINE, Mikio OHUCHI. Frequency dependence of electron temperature in hollow cathode-type discharge as measured by several different floating probe methods[J]. Plasma Science and Technology, 2018, 20(8): 85405-085405. DOI: 10.1088/2058-6272/aabfcd
    [3]Gao ZHAO (赵高), Wanying ZHU (朱婉莹), Huihui WANG (王慧慧), Qiang CHEN (陈强), Chang TAN (谭畅), Jiting OUYANG (欧阳吉庭). Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe[J]. Plasma Science and Technology, 2018, 20(7): 75402-075402. DOI: 10.1088/2058-6272/aab4f1
    [4]Jianquan LI (李建泉), Wenqi LU (陆文琪), Jun XU (徐军), Fei GAO (高飞), Younian WANG (王友年). Automatic emissive probe apparatus for accurate plasma and vacuum space potential measurements[J]. Plasma Science and Technology, 2018, 20(2): 24002-024002. DOI: 10.1088/2058-6272/aa97cd
    [5]Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06
    [6]REN Junxue(任军学), John L. POLANSKY, Joseph WANG. Analysis of the Anomalous Phenomenon in the Retarding Potential Analyzer Measurements[J]. Plasma Science and Technology, 2014, 16(11): 1042-1049. DOI: 10.1088/1009-0630/16/11/08
    [7]Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
    [8]A. RASHIDI, S. SHAHIDI, M. GHORANNEVISS, S. DALALSHARIFI, J. WIENER. Effect of Plasma on the Zeta Potential of Cotton Fabrics[J]. Plasma Science and Technology, 2013, 15(5): 455-458. DOI: 10.1088/1009-0630/15/5/12
    [9]WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.
    [10]K. HANADA, H. ZUSHI, H. IDEI, K. NAKAMURA, M. ISHIGURO, S. TASHIMA, E. I. KALINNIKOVA, M. SAKAMOTO, M. HASEGAWA, A. FUJISAWA, A. HIGASHIJIMA, S. KAWASAKI, H. NAKASHIMA, H. LIU, O. MITARAI, T. MAEKAWA. Non-inductive start up of QUEST plasma by RF power[J]. Plasma Science and Technology, 2011, 13(3): 307-311.
  • Cited by

    Periodical cited type(6)

    1. Liziakin, G.D., Gavrikov, A.V., Kuzmichev, S.D. et al. Generation of a radial electric field in a cylindrical plasma column with an axial magnetic field. Physics-Uspekhi, 2024, 67(5): 464-486. DOI:10.3367/UFNe.2023.12.039622
    2. Oiler, A.P., Usmanov, R.A., Antonov, N.N. et al. Increasing the Efficiency of Plasma Mass Separation by Optimizing the Electric Potential. Plasma Physics Reports, 2024, 50(5): 588-596. DOI:10.1134/S1063780X24600579
    3. Valinurov, M.A., Gavrikov, A.V., Liziakin, G.D. et al. Plasma Potential Fluctuations in a Reflex Discharge with Thermionic Cathode. Plasma Physics Reports, 2023, 49(5): 649-655. DOI:10.1134/S1063780X22601766
    4. Antonov, N.N., Liziakin, G.D., Vetrova, S.B. et al. Transformation of Condensed Matter into a Low-Temperature Plasma Flow for Problems of Plasma Mass Separation with a Potential Well. Plasma Physics Reports, 2023, 49(5): 617-621. DOI:10.1134/S1063780X22601754
    5. Liziakin, G., Antonov, N., Smirnov, V.S. et al. Plasma mass separation in configuration with potential well. Journal of Physics D: Applied Physics, 2021, 54(41): 414005. DOI:10.1088/1361-6463/ac128e
    6. Liziakin, G., Oiler, A., Gavrikov, A. et al. Radial distribution of the plasma potential in a cylindrical plasma column with a longitudinal magnetic field. Journal of Plasma Physics, 2021, 87(4): 905870414. DOI:10.1017/S0022377821000829

    Other cited types(0)

Catalog

    Article views (124) PDF downloads (174) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return