Advanced Search+
Dogan MANSUROGLU, Ilker Umit UZUN-KAYMAK. Experimental analysis on the nonlinear behavior of DC barrier discharge plasmas[J]. Plasma Science and Technology, 2017, 19(1): 15401-015401. DOI: 10.1088/1009-0630/19/1/015401
Citation: Dogan MANSUROGLU, Ilker Umit UZUN-KAYMAK. Experimental analysis on the nonlinear behavior of DC barrier discharge plasmas[J]. Plasma Science and Technology, 2017, 19(1): 15401-015401. DOI: 10.1088/1009-0630/19/1/015401

Experimental analysis on the nonlinear behavior of DC barrier discharge plasmas

Funds: This research is supported by the Scienti?c Research Project Fund of Middle East Technical University, under project # BAP-08-11-2016-044.
More Information
  • Received Date: May 23, 2016
  • Nonlinear behavior of glow discharge plasmas is experimentally investigated. The glow is generated between a barrier semiconductor electrode, Chromium doped namely Gallium Arsenide (GaAs:Cr), as a cathode and an Indium–Tin Oxide (ITO) coated glass electrode as an anode, in reverse bias. The planar nature of electrodes provides symmetry in spatial geometry. The discharge behaves oscillatory in the time domain, with single and sometimes multi¬periodicities in plasma current and voltage characteristics. In this paper, harmonic frequency generation and transition to chaotic behavior is investigated. The observed current–voltage characteristics of the discharge are discussed in detail.
  • [1]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [2]
    Bogaerts A et al 2002 Spectrochim. Acta B 57 609
    [3]
    Takan T et al 2016 Opt. Quantum Electron. 48 292
    [4]
    Klinger T et al 2001 Phys. Plasmas 8 1961
    [5]
    Astrov Y et al 1998 Phys. Rev. Lett. 80 5341
    [6]
    Astrov Y A and Purwins H 2002 Tech. Phys. Lett. 28 910
    [7]
    Purwins H G, B?deker H U and Amiranashvili S 2010 Adv. Phys. 59 485
    [8]
    Strümpel C, Astrov Y A and Purwins H G 2002 Phys. Rev. E 65 066210
    [9]
    Ammelt E, Astrov Y A and Purwins H G 1997 Phys. Rev. E 55 6731
    [10]
    B?deker H U et al 2004 New J. Phys. 6 62
    [11]
    Rafatov I R, ?ija?i? D D and Ebert U. 2007 Phys. Rev. E 76 036206
    [12]
    Trunec D, Brablec A and Buchta J. 2001 J. Phys. D: Appl. Phys. 34 1697
    [13]
    Golubovskii Y B et al 2003 J. Phys. D: Appl. Phys. 36 39
    [14]
    Sublet A et al 2006 Plasma Sources Sci. Technol. 15 627
    [15]
    Golubovskii Y B et al 2006 J. Phys. D: Appl. Phys. 39 1574
    [16]
    Salamov B G 2004 J. Phys. D: Appl. Phys. 37 2496
    [17]
    Shang W 2007 A survey on pattern formation in DC gas discharge systems PhD Münster University, Münster, Germany
    [18]
    Raizer Y P 1991 Gas Discharge Physics (Berlin, Heidelberg: Springer)
    [19]
    Bode M and Purwins H G 1995 Physica D 86 53
    [20]
    http://physics.nist.gov/PhysRefData/Handbook/Tables/ nitrogentable2.htm
    [21]
    Strümpel C, Astrov Y and Purwins H-G. 2000 Phys. Rev. E 62 4889
    [22]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley)
    [23]
    Deka U, Rao A and Nurujjaman M 2015 Phys. Scr. 90 125602
    [24]
    Uzun-Kaymak I U and Skiff F 2006 Phys. Plasmas 13 112108
    [25]
    Nikias C L and Mendel J M 1993 IEEE Signal Process. Mag. 10 10
  • Related Articles

    [1]Yinhai PAN (潘银海), Bowen ZHENG (郑博文), Wei ZHANG (张伟), Zejie YIN (阴泽杰). Development of the HL-2M digital pulse analysis system[J]. Plasma Science and Technology, 2019, 21(11): 115601. DOI: 10.1088/2058-6272/ab341d
    [2]Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814
    [3]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [4]Jiting OUYANG (欧阳吉庭), Ben LI (李犇), Feng HE (何锋), Dong DAI (戴栋). Nonlinear phenomena in dielectric barrier discharges: pattern, striation and chaos[J]. Plasma Science and Technology, 2018, 20(10): 103002. DOI: 10.1088/2058-6272/aad325
    [5]Jia FU (符佳), Bo LYU (吕波), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Dongmei LIU (刘冬梅), Yongqing WEI (魏永清), Chao FAN (范超), Yuejiang SHI (石跃江), Zhenwei WU (吴振伟), Baonian WAN (万宝年). Development of signal analysis method for the motional Stark effect diagnostic on EAST[J]. Plasma Science and Technology, 2017, 19(10): 104001. DOI: 10.1088/2058-6272/aa7941
    [6]Chen YUAN (袁晨), Jun WU (吴军), Zejie YIN (阴泽杰). A digital wide range neutron flux measuring system for HL-2A[J]. Plasma Science and Technology, 2017, 19(8): 84004-084004. DOI: 10.1088/2058-6272/aa6bf1
    [7]Huijuan WANG (王慧娟), Guangshun ZHOU (周广顺), He GUO (郭贺), Cong GENG (耿聪). Kinetic analysis of soil contained pyrene oxidation by a pulsed discharge plasma process[J]. Plasma Science and Technology, 2017, 19(1): 15504-015504. DOI: 10.1088/1009-0630/19/1/015504
    [8]ZHANG Dingzong (张定宗), WANG Yanhui (王艳辉), WANG Dezhen (王德真). The Nonlinear Behaviors in Atmospheric Dielectric Barrier Multi Pulse Discharges[J]. Plasma Science and Technology, 2016, 18(8): 826-831. DOI: 10.1088/1009-0630/18/8/06
    [9]SHENG Zhicai (盛志才), XU Liuwei (许留伟), FU Peng (傅鹏). Design and Analysis of the Main AC/DC Converter System for ITER[J]. Plasma Science and Technology, 2012, 14(4): 338-342. DOI: 10.1088/1009-0630/14/4/13
    [10]WANG Zhen (王振), WANG Ninghui (王宁会), LI Tie (李铁), CAO Yong (曹勇). 3D Numerical Analysis of the Arc Plasma Behavior in a Submerged DC Electric Arc Furnace for the Production of Fused MgO[J]. Plasma Science and Technology, 2012, 14(4): 321-326. DOI: 10.1088/1009-0630/14/4/10

Catalog

    Article views (276) PDF downloads (551) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return